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Effective diagnosis of acute and difficult-to-heal wounds is critical for wound care physicians to provide
effective patient care. Poor clinical outcomes are often associated with infection, peripheral vascular dis-
ease, and increased wound depth, which collectively exacerbate these comorbidities. This study proposes
a multimodal model combining two advanced architectures, a Swin transformer and a Transformer, for
wound classification. The multimodal network was built by combining features extracted by the Swin
transformer and location features to classify diabetic, pressure, surgical, and venous wound types. The Swin
transformer was used to extract image latent features, and the transformer was used to extract location latent
features using a decimal encoding map. These features were combined in a fusion layer to adopt the final
classification. Swin Transformer and Transformer focuses on wound classification and leverages the strengths
of Transformers for a more robust and accurate integration of visual and spatial information. The proposed
method was comprehensively compared with deep neural networks (DNNs) for classification on the AZH
dataset. Experimental results show significant classification accuracy across wound classes (including only
diabetic, pressure, surgical, and venous) in different experiments ranging from 0.7778 to 1.0. The proposed
model in four wound class classifications (D vs. P vs. S vs. V) on the AZH dataset with a simplified body map
achieved values of 0.8209, 0.8220, and 0.8220 for precision, recall, and Fl-score, respectively. The results
presented in this study demonstrate the exceptional accuracy of the proposed method in accurately classifying
the most common wound types using images of wounds and their respective locations.

The prevalence of chronic wounds in developed countries has been
estimated to affect 1 to 2 percent of the population at least once during
their lifetime. In a report published by Mission Regional Medical Center

1. Introduction

Providing internal organs with vital protection from external fac-
tors, skin plays an important role in maintaining human health and
overall well-being. Skin is highly susceptible to numerous factors that
can lead to tissue damage and the onset of trauma (Li et al., 2023).
The resulting wounds from the damage can be classified into two
categories based on their origin: acute or chronic. Specifically, the
acute group consists of injuries resulting from external factors, such as

in 2020, it was estimated that around 6.7 million people in the United
States were suffering from chronic wounds (Maeso et al., 2024), leading
to between USD 28-90 billion in medical costs (Saeed & Martins-Green,
2024). Given the significance of this issue, wound diagnosis for effec-
tive treatment and management has become a pressing global concern.

bites, burns, and minor cuts, while chronic wounds stem from internal
conditions, such as venous, arterial insufficiency, high blood pressure,
and diabetes. Chronic wounds take a lot of time to heal in contrast to
acute wounds which heal in a balanced and short period of time (Irfan-
Magsood, 2018). Accordingly, chronic wounds pose a serious health
risk due to their severity and burden to the healthcare systems across
the world.
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In traditional methods, wound assessment relies primarily on specialists
and is performed manually, often resulting in time-consuming and
variable outcomes. To address these issues, the demand for effective
diagnostics and management has increased, leading to the advent of
artificial intelligence (AI) and significant changes in healthcare. Recent
advancements in artificial intelligence (AI) and deep learning have
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shown great promise in the field of medical image analysis. One of the
most widely used deep learning models in the tasks of computer vision
is the convolution neural network (CNN).

This architecture has shown remarkable results in various computer
vision tasks, including object detection or image segmentation (Saha,
2018). However, by focusing primarily on local features in data, CNNs
face limitations in capturing long-range dependencies and global con-
text, resulting in reduced performance for tasks that require holistic
image interpretation. Accordingly, these challenges have prompted the
search for more advanced models such as Transformers, which have
demonstrated dominant success in the field of natural language pro-
cessing (NLP). Inspired by the success of the self-attention-based trans-
former model in NLP, Dosovitskiy (2020) introduced vision transformer
(VIT) architecture for image classification applications (Gheflati & Ri-
vaz, 2022). In a comparison study conducted by Mauricio, Domingues,
and Bernardino (2023) between CNN and VIT, the authors reported
that the ViT architecture demonstrated greater robustness and better
performance compared to CNN networks across 17 reviewed papers.
Despite the advantages, VIT also faces challenges including quadratic
computational complexity and issues with scale variation when adapt-
ing Transformer architecture from NLP to computer vision. To address
these challenges, Liu et al. (2021) proposed the Swin Transformer,
a novel architecture based on shifted window self-attention. This ar-
chitecture generates multi-scale feature representations and processes
images with linear computational complexity, enabling it to handle
high dimensional data more efficiently.

Although this technique has shown remarkable results in segmen-
tation, the inherent limitations of CNNs, particularly their difficulty in
capturing long-range dependencies and contextual information, have
driven the search for more advanced models (Khan et al., 2023). As a
result, the Swin Transformer, a novel architecture based on transformer
models, has gained attention for its superior performance in image
segmentation tasks. Unlike traditional convolutional neural networks
(CNNs), the Swin Transformer can capture long-range dependencies in
images, making it particularly well-suited for complex medical images.
Despite the advancements, the need for more reliable and accurate
wound classification results remains a pressing concern.

Deep learning techniques have significantly advanced medical im-
age analysis, particularly wound classification. Convolutional neural
networks (CNNs) are widely used due to their ability to automatically
extract and learn complex features from wound images and have shown
strong performance in various diagnostic tasks. Transfer learning, using
pre-trained models such as VGG16, ResNet, and EfficientNet, trained on
medical datasets, has been particularly effective in increasing classifica-
tion accuracy with limited data. However, these models focus primarily
on visual features and often ignore spatial information, which is crucial
for accurate classification. This visual-centric approach can lead to
misclassification due to omitting key location-based contextual cues,
such as similar wounds. They can have distinct classifications based on
their anatomical location. The inadequate integration of multimodal
data, a combination of visual and spatial information, represents a
significant gap. To address these limitations, this study proposes a
novel multi-faceted approach that integrates image and spatial data
to increase the accuracy of wound classification. Our methodology
combines Swin Transformer and Transformer, which are specifically
designed to process spatial data encoded as binary sequences.

Despite advancements, the need for more reliable and accurate
image classification specifically for different wound types remains a
pressing concern. Therefore, this study proposes a hybrid approach
which combines a Swin Transformer with a transformer. Using a trans-
former for location data and a Swin Transformer for image data,
this approach leverages both architectures’ strengths to capture spatial
dependencies and complex spatial patterns. The main contributions of
this paper can be summarized as follows:
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1. To develop and evaluate a multimodal approach for wound
classification using a combination of image data with location
information.

2. To assess the effectiveness of various machine learning mod-
els for wound classification tasks, including convolution neural
networks (CNNs) and transformer-based architectures.

3. To investigate the effectiveness of data augmentation on model
performance and robustness.

As for the rest of the study, it proceeds as follows. In Section 2,
the related works are presented. It is followed by a discussion of the
methodology. In Section 3, the materials employed are discussed. In
Section 5, the findings of this study are described (see Figs. 1 to 5).

2. Related work

In an effort to minimize issues, interest in automated wound as-
sessment procedures has grown over time. The use of swift and accu-
rate systems, processing power, and technological advancements have
increased. Researchers continue investigating conventional machine
learning algorithms due to their more accessible structure and greater
interpretability. An overview of the literature reviewed in this study
is presented in Figure Fig. 1. For example, T. Chitra et al. conducted
a study utilizing the Random Forest (RF) method to segment and
classify wound images and tissues. Their findings demonstrated that
the RF method is not only easier to use but also more accurate than
manual inspections. The approach is appropriate for physicians at lower
levels of telemedicine since it is straightforward, economical, and time-
efficient (Chitra, Sundar, & Gopalakrishnan, 2022). Using artificial
intelligence, Catarina Pereira et al. created a wound image analysis
system that forecasts surgery site infections. The system uses a machine
learning classification model to forecast changes and a deep learning
segmentation model (MobileNet-Unet) to recognize wound kinds (leg,
chest, and drain). While machine learning models use color and texture
information to classify wound images, deep learning models segment
images and assign wound types. With a mean intersection over the
union of 0.899 and a mean average accuracy of 0.901, the segmentation
model performed well. With 0.876 recall and 0.526 accuracy, the leg
wound classifier produced the best results (Pereira et al., 2023). This
study by Syifa’ah Setya Mawarni et al. utilizes GLCM to extract features
from wound image test data. The results show that 0.0082 is the
contrast value, 0.9769 is the correlation value, 0.6391 is the energy
value, and 0.9959 is the homogeneity value. The results of applying the
SVM method showed 0.9639 accuracy, 0.9306 precision, 0.9285 recall,
and a 0.9258 F1-score. The SVM approach has a 0.9285 classification
accuracy for external wound pictures (Murinto, Sunardi et al., 2023).
To help with treatment planning, Huang-Nan Huang et al. investi-
gated picture identification of diabetic foot sores. To identify, detect,
and size wounds, they employed object recognition technologies, deep
neural networks, convolutional neural networks, and the PEDIS score,
a qualitative evaluation technique. Medical professionals annotated
picture characteristics and trained machine learning modules using the
Object Detection Fast R-CNN technique. Researchers discovered that
the assessment’s accuracy could potentially reach 0.90 (Huang et al.,
2022). Takuro Nagataa et al. developed an algorithm that uses machine
learning to classify skin tears in digital photos. They used random forest
and support vector machine techniques to classify small regions of
skin tear images. Thirteen photos were used to assess the effectiveness
of these algorithms. The outcomes demonstrated that the algorithms
could categorize different skin tears, which might help nurses manage
skin tears even without wound care experience. Regarding wound
segment and STAR category classification, the support vector machine
performed with 0.74 and 0.69 accuracy, respectively (Nagata et al.,
2021). According to Zinnel and Bentil (2023), the convolution neural
network (CNN) is the most promising machine learning technique for
identifying, categorizing, and predicting TBI severity and outcomes in
clinical settings.
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Fig. 1. Classification of the reviewed literature in two subsections of machine learning and deep learning.

Scebba et al. (2022) developed Detect-and-Segment (DS), a deep
learning method for image-based wound diagnosis. They used deep
neural networks to locate the wound, separate it from the background,
and create a segmentation map. They evaluated the DS using four sepa-
rate data sets, including data on diabetic foot ulcers. With the ulcer data
set, Matthews’ correlation value increased from 0.29 to 0.85. The DS
can train segmentation models with up to 0.90 less training data with-
out compromising performance. This strategy, which automates wound
analysis, aims to reduce the amount of work required to maintain
chronic wounds. A study by Huang et al. (2023) introduced a CNN-
based model in wound assessment aimed at assisting non-specialist
medical personnel. Using a multi-task deep learning framework, their
model could simultaneously classify five key wound types: deep, in-
fected, arterial, venous, and pressure wounds. The findings showed
that the proposed model outperformed or matched the performance of
medical personnel across five wound classification tasks.

Abazari, Ghaffari, Rashidzadeh, Badeleh, and Maleki (2022) sys-
tematically reviewed studies focusing on burn wound classification,
identification, and healing processes. This review conducted a detailed
analysis of 16 articles on wound classification, 52 on wound healing,
and 18 on identifying and classifying new wounds. As a result, this
review highlights the need for a more comprehensive classification
system for burn wounds, considering more effective and critical factors
that fall into two main categories: local factors and systemic factors.

Lo et al. (2024) proposed an explainable AI model in their study
to analyze 2957 wound images taken from the Singapore Vascular
Wound Registry. The Al system demonstrated proficiency across mul-
tiple tasks, achieving 0.959 accuracy in wound classification, 0.850
in in-depth assessment, 0.871 in width and length determination, and
0.878 in wound segmentation. Notably, explainable AI techniques were
employed in this research to achieve high accuracy and enhance the
transparency of the developed model as a potential model, making it
a potential tool for improving wound assessment among Asian popula-
tions.

By addressing a substantial gap in the existing literature, which
primarily focuses on binary outcomes, Aldoulah, Malik, and Molyet
(2023) introduced a novel deep learning framework called Swish-
ELU EfficientNet-B4 (SEEN-B4), capable of classifying chronic wounds
into multiple categories. Their proposed model was implemented on
publicly accessible datasets, including Medetec and AZH datasets as
well as their extended version,to tackle issues associated with class
imbalance. Compared to existing state-of-the-art methods, the SEEN-B4
model achieved superior accuracy rates of 0.8732, 0.8817, 0.88, and
0.8934 on the AZH, extended AZH, Medetec, and extended Medetec

datasets, respectively. These high accuracy rates indicate the model’s
robustness across different datasets in addition to its effectiveness
in classifying chronic wounds. To enhance the accuracy of multi-
class wound classification, Guo et al. (2023) addressed the challenges
posed by the complexity and variety of wound images, which render
thewidely used deep learning model, Convolutional Neural Network
(CNN), inefficient during feature extraction. Accordingly, the authors
presented a novel High and Low-Frequency Guidance Network (HLG-
Net), consisting of two branches, namely the High-Frequency Network
(HF-Net) and the Low-Frequency Network (LF-Net), to extract detailed
textures and global information from wound images, respectively. By
combining the extracted features from both branches, the architecture
demonstrated impressive accuracies of 0.9800 for two-class, 0.9211 for
three-class, and 0.8261 for four-class classifications.

Another study conducted by Narayanan and Ghanta (2024) ad-
dressed the critical challenge of training data scarcity, which arises pri-
marily due to privacy and legal concerns. To overcome this challenge,
the authors employed two main data augmentation approaches: geo-
metric transformations and Generative Adversarial Networks (GANSs).
Using state-of-the-art computer vision models (MobileNet V2,
ResNet50, and VGG16) as a baseline, they demonstrated that geo-
metric data augmentation, including rotating and brightening images,
improved classification by up to 0.11 in Fl-scores across key wound
categories. Despite the success of their experiments with DE-GANS,
they concentrated primarily on diabetic ulcers due to computational
constraints and mode collapse challenges. Their findings revealed that
generating synthetic wound images with rich variations using DE-GANs
did not consistently translate into improved classification accuracy.

In addition to the need to accurately classify wound types, Park
and Sung (2024) highlighted the importance of rapid wound assess-
ment in emergency situations and quick decision-making about wound
treatment. To address this, the researchers employed two state-of-the-
art image classification models: ResNeXt and Vision Transformer (ViT).
By training on a combined dataset of about 1000 images from the
Medetec and AZH datasets, the proposed ViT-based modeloutperformed
the previous studies in this field, achieving remarkable performance
metrics with limited data: 0.9278 accuracy, 0.9489 precision, 0.9187
recall, and 0.9244 F1-score. Another Vision Transformer (ViT)-based
study, conducted by Pagadala, Silas, and Joy (2024), focused on the
accurate and efficient classification of Diabetic Foot Ulcers (DFU),
specifically distinguishing between healthy skin and ulcerous tissue. To
achieve this, the authors developed an ensemble model combining two
different architectural approaches: ResNet50 with Vision Transformers
and MobileNet with Vision Transformers. When tested on a dataset
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Table 1
A summary of recent studies on wound pictures.
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Ref Data type Target output Num. of samples Method Performance measure
Chitra et al. (2022) 3-D representation Classify tissues and segment wound images Random Forest (RF) 0.938
Pereira et al. (2023) RGB images Predict wound changes, 1443 MobileNet-Unet and KNN and RF 0.901
identify the wound area
Murinto et al. (2023)  Wound Dataset Severity of a diabetic foot ulcer 280 SVM algorithm and 0.9285
Huang et al. (2022) DFUC 2020 Dataset Image segmentation 3600 Fast R-CNN 0.90,
Nagata et al. (2021) JPEG format Skin Tear classification 31 images SVM classification 0.74 and 0.69
Zinnel and Bentil brain imaging or EEG data Diagnosis and management of skin tears convolutional neural network -
(2023)
Scebba et al. (2022) Medetec Medical Images Wound segmentation 1096 Deep Learning (DL) 0.90
Huang et al. (2023) Accuracy,
Sensitivity,
Color wound images Binary classification 2149 wound images DL-based CNN model Specificity,
AUC,
Kappa
Lo et al. (2024) DenseNet, MobileNet, and ResNet Accuracy,
Asian Vascular wound images Wound classification (4 types) for classification Fl-score,
8 Wound measurements (width, length, depth) 2957 wound images DeepLab, FPN, U-Net for AUROC,
Wound segmentation (18 features) segmentation Confidence,

Explain ability scores

Chitra et al. (2022) Classification of wound tissues into three

categories

Chronic wound
tissue images

Not specified Random Forest (RF) algorithm Accuracy

of more than 1000 images, ResNet50-ViT achieved 0.9375 validation
accuracy, while MobileNet-ViT reached 0.9688 (See Table 1).

3. Methodology

While transformer architecture is highly demanded for its excep-
tional performance in natural language processing (NLP) tasks, its
application has expanded significantly as a general-purpose backbone
in computer vision (CV). However, the transfer from NLP to CV intro-
duces two main challenges, reflecting the difference between language
and vision data: (1) object detection, and (2) semantic segmentation.
Compared to NLP, which uses a relatively fixed scale for tokens, visual
elements in images can vary greatly in scale. Similarly, because images
generally have higher resolutions compared to text, tasks involving
dense predictions, such as semantic segmentation, are complicated
by the quadratic computational complexity of traditional transform-
ers. Consequently, the first transformer model to utilize purely self-
attention, known as the Vision Transformer (ViT), was introduced for
image recognition by Dosovitskiy (2020). Although ViT has demon-
strated outstanding performance in computer vision task (Ayas & Tunc-
Gormus, 2022), it struggles with variations in object size within images
and the high resolution of images, which exceeds the capacity of
the model (Chen, 2022). To overcome these challenges, a ViT-based
model called the Swin Transformer was developed, which constructs
hierarchical feature maps to manage the different scales of visual
elements effectively. This model starts with small patches for the
first transformer layer. Then it merges them into bigger ones in the
deeper transformer layers, leading to the building of more abstract
and hierarchical representations of the image. To address the high
complexity of applying transformers to high-resolution images, the
Swin Transformer leverages computing self-attention locally within
non-overlapping windows of the image.

3.1. Method

Similar to the vision transformer (ViT), the initial processing in the
Swin transformer starts with splitting the input RGB image into non-
overlapping patches. The features of each patch are represented by
the combination of raw pixel RGB values, followed by their projec-
tion into an arbitrary dimension through a linear embedding layer. A
modified self-attention mechanism with a window-based approach is
applied to achieve linear computational complexity. More specifically,
in contrast to the traditional transformers which are impractical in
processing high-resolution images, Swin Transformer addresses this
issue by dividing the inputs into non-overlapping windows and then

computing the self-attention within each window. The computations
for both Traditional and Swin transformers are as follows:

Q(MSA) = 4hwC? + 2(hw)>C (@)

QW — MSA) = 4hwC? + 2M?*(hw)C 2

While global self-attention computes the relationships between all pairs
of patches, the Swin Transformer reduces computational complexity
by considering self-attention independently within each window. In
this method, the computational complexity is 2M2?hwC and scales
linearly with the number of windows, rather than quadratically as
represented by 2(hw)>C in Global Self-Attention. Despite reducing the
computation, the window-based self-attention module has a limitation
in cross-window connections, addressed by alternating between two
window partitioning configurations—regular and shifted—in successive
Swin Transformer blocks.

In the first step, the module applies a regular window-based self-
attention (W-MSA) from the top-left pixel of the image and divides an
8 x 8 feature map into two 2 * 2 windows, each 4 x 4.

=W - MSA(LN(Z'™Y) + 27! 3)

2l = MLP(LN(2")) + 28 ©)]

Mathematically, the formulas refer to a two-process computation ap-
plied in the Swin transformer using window-based multi-head self-
attention (W-MSA) and a multi-layer perceptron (MLP). In the first pro-
cess, the normalization layer (LN) is performed on the input features,
obtained from the previous layer (Z/~!). Using normalized features, W-
MSA calculates self-attention for each non-overlapping window. Com-
pared to global self-attention, localized attention shows a significant
reduction in computational complexity due to considering the relation-
ships within each window. To ensure that the original input features
are preserved, the residual connection +z~! is added to the output of
W-MSA LN(Z'-1). For the next step, the normalization layer is applied
once more on the output features from the previous step, denoted as z*.
This step is followed by feeding the processed output into a multi-layer
perceptron (MLP). The MLP applies a sequence of linear transforma-
tions and non-linear activations, improving the feature representation.
To ensure the continuity and stability of the process in the learning,
the original W-MSA features through a residual connection, +z' are
combined with the MLP output.

2 = SW - MSA(LN(Z")) + 2/ (5)

2 = MLP(LN (@) + 5! (6)
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Fig. 3. The process of converting numbers related to the location of wounds from decimal to binary.

To address the window-based self-attention mechanism’s inability to
perform cross-window connections, shifted window-based multi-head
self-attention (SW-MSA) is applied to the previous layer’s configuration.
To this end, the normalization layer is initially applied to the previous
MLP output features and then passed through the Shifted Window-
based Multi-head Self-Attention mechanism. The residual connection
+z! is added to the SW-MSA output to help retain the original input
features. Again, the output feature of SW — M SA(LN(z'))+z/, denoted
as z/ + 1, is normalized by the normalization layer (LN (2/+!)). Follow-
ing the normalization process, another MLP is applied to the output
features to enhance their representation. The MLP output combined
with the residual connections, 2/*!, involving the original features
from the SW-MSA step. Despite the advantages, an issue that arises
when implementing Shifted Window Partitioning is the increase in the
number of windows, which can lead to inefficiencies. More specifically,
the initial configuration has a total of ([%] * [ﬁ]) windows, while the
shifted configuration increases this number to([%] +1) % ([%] + 1),
causing some windows to become smaller than M * M in size. As an
instant solution, padding is applied to the smaller windows to reach
the full size of M « M. This approach increases the computation, even
though it masks out the padded values during attention computation.
To address this issue, Liu et al. (2021) propose a more efficient batch
computation method, which entails shifting windows cyclically in the
direction of the top-left. In this method, the edge going beyond the
shifted windows wraps around the opposite edge. As a result, a batched

window is created where sub-windows are not positioned next to each
other in the original feature map. This lack of adjacency requires the
implementation of a masking mechanism to maintain efficiency in self-
attention computations. An overview of Swin Transformer application
on the input dataset is given in Fig. 2. The output of applying Swin
Transformer on the input images is called Image,,,,,. This vector
contains the low-level features extracted from the image.

3.2. Transformer

The proposed transformer-based approach for extracting features
from the disease location is shown in Fig. 4. Before examining the
details of the transformer, we will first pre-process the data related to
the location of the wounds. These features, originally numerical values
ranging from 1 to 323, are converted into binary code. The decimal to
binary conversion process is shown in Fig. 3. In fact, a 9-digit binary
number was considered for each location of the disease. This 9-digit
characteristic was considered as the input of the transformer in the form
of the sequence Loc = [X, X}, ..., Xgl.

Let S = X,,y,;_, denote a set of problem inputs(binary numbers).
Where X; represents the input signal, and y; represents the associated
class. y € 1,2,3,...,m where m is the number of classes defined in
the data set. The Transformer model aims to learn the mapping from
the sequence X to the corresponding semantic label. The proposed
transformer is completely based on the vanilla Transformer (Cheng
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et al., 2024), an architecture that has attracted much attention in recent
years by showing improved performance in machine translation and
other NLP tasks. The transformer follows an encoder—decoder archi-
tecture that can process sequential data in parallel without relying on
redundant networks. The success of transformer models has primarily
benefited from the self-attention mechanism, which has been proposed
to capture long-range relationships between sequence elements. Vanilla
Transformer is proposed as an attempt to extend the use of standard
transformers to time series classification. Unlike conventional CNN and
RNN architectures that typically use filters with a local receptive field
or input sequence order, the attention mechanism employed by Vanilla
Transformer allows it to focus different input regions. The complete
architecture of the whole model is shown in Fig. 4. It consists of
an embedding layer, an encoder and a final classifier. The first step
transforms an input X from the training set into rolling windows. The
transformer considers each window as one view. Therefore, the input X
is represented in the form 7 « H = FT * H = F, where T indicates the
number of previous time steps, H indicates the row of data (its value
is considered 1), and F indicates the number of features in the data.
Below are the components of the proposed transformer.

3.2.1. Linear embedding layer

Before feeding the sequence of rolling windows to the encoder, the
input is linearly predicted in the dimension vector of the model d
using the learned embedding matrix E. The embedded representations
are then concatenated together with a learnable classification token
v, required to perform the classification task. The transformer views
embedded inputs as a collection of patches in no particular order.
To maintain the spatial arrangement of the patches as in the original
sequence, the positional information E, is encoded and added to the
rolling window displays. The embedded sequence resulting from rolling
windows is given by:

z_[v X1 E;xyE5 .. x, E]1+ Epos )

class>

Where E € R?*9*d and E,,, € R+,

It is claimed in Dosovitskiy (2020) and Bazi, Bashmal, Rahhal, Dayil,
and Ajlan (2021) that 1 — D and 2 — D positional encoding produce
almost identical results. Therefore, a simple 1 — D positional encoding
is used in the proposed model to maintain the positional information.

GlobalPoolingLayer

— Output Sequence

Fig. 4. An overview of the transformer model for binary decoded data.

3.2.2. Transformer encoder

The embedded sequence zj is sent to the Transformer encoder. The
encoder can consist of L identical layers (in the proposed model, it
consists of one layer). Each layer has two main components:

1. Multihead self-attention block (MSA):

2= MSALLNGZ,_ )+ 211 =1,...,1 ®)
2. Fully connected feed-forward dense block (MLP):
2= MLP(LNGZ)+Z,1=1,....1 ©)

LN stands for Normalization layer. LN is a function that maps R? — RP
using two parameters: gains a and biases f. This relationship is as
follows:

INGap =" oty 10)
1

”zﬁzililzi

= lzD — )2

°=\p i1 (zi — )

Where, z; is the ith element of the vector z.
In the last encoder layer, we take the first element in the sequence

L and send it to an external head classifier to predict the class label.

20

y=LN(zp) an

The MSA block in the encoder is the central component of the trans-
former. It determines the relative importance of embedding a sequence
with respect to other embeddings in the sequence. This block has four
layers:

1. linear layer

2. Self-attention

3. Concatenation layer
4. Final linear layer

The self-attention score was found to have a high “scatter”, meaning
that some dot-product pairs could contribute to the attention mecha-
nism, and others could be ignored (Zhou et al., 2021). The i — h query
attention can be defined as a kernel in the following form:

k(g;- k)

Attention(q;, K, V) = Z mvj
i» ki

12)
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In this regard, the attention of query i to all keys is defined as probabil-
ity p(k;|q;), and the output is its combination with v values. We want to
identify the most important queries that can be achieved by measuring
the similarity between p and q using the Kullback-Leibler divergence.
The dispersion measure of query i can be defined as follows:

i KT 4K

I
1
M@, K)=In) e V2 —— Y e V2 (13)
) - Z

j=1
In the following the probsparse self-attention can be defined as:

AT

Attention(Q, K, V) = so ftmax( oK 4 a4

Given an input sequence of tokens represented as a matrix X
with dimensions (sequence_length, embedding dimension), the atten-
tion mechanism calculates a set of attention scores A as follows:

For each position i in the sequence:

1. Generate three new matrices:

* Query matrix Q; by multiplying X; (the input at position
i) with a learnable weight matrix Wo.

+ Key matrix K; by multiplying X with another learnable
weight matrix Wy.

+ Value matrix V; by multiplying X with a third learnable
weight matrix Wy,.

2. Compute the attention scores between the query Q; and all key
positions in the sequence using the dot product:

T
A; = softmax < Q\’;;_ > (15)
k

* A; represents the attention scores for position i.

* Q, is the query matrix for position i.

+ KT is the transpose of the key matrix.

* d, is the key vectors’ dimension, typically a fraction of the
embedding dimension.

3. Use the attention scores to compute a weighted sum of the value
matrices:

0,= AV (16)

* O, represents the output (context) vector for position i.
+ A, is the attention scores for position i.
 V is the set of value matrices for all positions.

The attention scores reflect how much each position’s information
contributes to the representation of the current position. This mech-
anism allows the model to focus more on relevant parts of the input
when making predictions or encoding information.

In summary, the attention mechanism calculates attention scores
by comparing queries with keys to measure the importance of differ-
ent positions in the input sequence. This process captures relation-
ships and dependencies, enabling the model to understand context and
relationships within the data.

The attention mechanism can be mathematically represented as:

. OKT
Attention(Q, K, V') = softmax 14 a7
Vi
The Attention Calculation Formula is as follows:

O : Query matrix

=

: Key matrix
V : Value matrix
d, : Dimension of keys

n : Number of elements in the sequence
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The attention score between a query element ¢; and a key element
k; is calculated as:

score(q;, k;) = q; - ij (18)

To improve the weighting, the attention scores are often scaled by
the square root of the dimension of keys d:

score(q;, k ;)
scaled_score(q;, k;) = - =7 (19)

vy
The scaled scores are then passed through a Softmax function to get
the attention weights w;;:

esca[ed_scr)re(q,-,kj)

wij = n led (i k) (20)
Z/:] pscaled_score(q;.k;

These attention weights represent the importance of each key ele-
ment k; with respect to the query element g;. They are then used to
compute a weighted sum of the value elements v; to obtain the final
output:

n
attention(q;, K, V) = Z Wij - v; @b
=1

3.3. Encoder and decoder

The proposed model uses the encoder module to capture the inputs
long-term dependence. The ™ input X, is mapped to a matrix X }Ee don €
RY % d,, .- The encoder consists of several attention layers and Global
Pooling layers. We use a distillation operation to select the top V' value
compounds with dominant properties. The procedure between the two
layers is defined by the following relationship:

X!, = ELU(Global Pooling([X}1p)) (22)
in this equation [.],p is the multi-head ProbSparse self-attention. The
feature map generated by the encoder is fed to the decoder. The
receiver has two identical multihead attention layers. To reduce the
speed loss in long prediction, in the proposed model, the following
vector is entered into the encoder:

= Concat(X} ;.. X¢) (23)

t
Xfeedde token’

where X is embedded and time stamp and X, is a placeholder for
target sequence. The output of applying transformer on the input en-
coded location is called Location,,,,,. This vector contains the low-level
features extracted from the encoded location.

At the end, the combination of Image,,,, and Location,,,, are
combined in a concatenate layer. The following is how to combine these
two vectors:

Finallugcxor = Imagelarent @ Localion,me,,, @24

Finally, the Finall,,.,. is used for classification. After passing
through several layers, this combination is mapped to an output layer,
which has n neurons (» number of data classes) and the Softmax
function is used to calculate the probability of classes.

In this study, the fusion of image and positional features is achieved
through a straightforward concatenation of latent vectors extracted
from each modality. Specifically, the I'mage,,,,, vector is derived from
the Swin Transformer, which processes wound images by dividing
them into non-overlapping patches, projecting them into a higher-
dimensional space, and applying a window-based self-attention mech-
anism. This results in a vector representation of the image’s low-
level features. Concurrently, the Location,,,,, vector is generated from
encoded wound location data, transformed into a 9-digit binary se-
quence and processed by the Transformer model, which captures spatial
patterns and relationships. These two latent vectors, Image,,,,, and
Location,,,,;, are combined in a concatenation layer to create the

Finall ., This fused vector serves as input to the classification layers,
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which consist of several processing layers culminating in a Softmax
activation function to predict the probability of each wound class.
While the current fusion method effectively integrates features from
both modalities, it does not explicitly address the relative importance
of image and location features. Advanced strategies such as weighting
schemes or attention mechanisms were not employed, leaving room
for further exploration in balancing feature importance to prevent
potential information loss. This approach, however, demonstrates a
robust framework for combining multimodal data, ensuring consistency
and simplicity in feature integration.

4. Material
4.1. Dataset: AZH Wound and Vascular Center Database

In this study, we use an open-source wound dataset, the AZH
dataset, containing 730 images of four distinct types of wounds, namely
venous, diabetic, pressure, and surgical wounds. To collect this dataset,
a two-year clinical effort was undertaken at the wound care center
in Milwaukee, Wisconsin, USA. Afterward, each image was assigned
to a wound type by a specialist from the center. As a leading center,
the AZH Wound and Vascular Center provides specialized services to
treat and manage chronic and complex wounds. The wound images
were taken using high-quality imaging devices, including an iPad Pro
(with software version 13.4.1) and a Canon SX 620 HS digital camera.
These images were stored in JPEG format, with sizes ranging from 320
to 700 pixels in width and 240 to 525 pixels in height. This dataset
includes only four types of wounds and surrounding skin, with each
image primarily representing a single patient, excluding non-essential
information such as personal particulars. Among the cases, some image
data were captured from different body sites of the same patient or
at various stages of wound healing, but they were considered separate
entries in the dataset due to their unique features. Importantly, all im-
ages in the AZH dataset were anonymized by the authors, ensuring that
no patient-identifying information was present. Notably, no additional
samples were added to the public dataset we were working on due to
the challenges of capturing more images under controlled clinical con-
ditions. This dataset includes neither any direct experiments conducted
on humans nor the use of human tissue samples. It can be accessed
online at the following GitHub repository: https://github.com/uwm-
bigdata/Multi-modal-wound-classification-using-images-and-locations.

4.2. Deep learning library

In this research, Keras was used to implement neural networks.
Keras' is an open-source machine learning library that has recently
become very popular for implementing deep learning models. Keras
has a simple and intuitive interface for developing deep neural network
models, enabling implementation by calling layers and functions. Ad-
ditionally, this library supports multiple backends, such as Tensorflow?
and Theano,® reducing the complexity threshold for developing neural
network models. In general, this framework is known as a high-level
user interface. Table 2 shows the hardware and software specifications
of this research.

1 https://keras.io/.
2 https://www.tensorflow.org/.
3 https://pypi.org/project/Theano/.

Expert Systems With Applications 280 (2025) 127077

Table 2
The hardware and software specifications of this research.
Software
Name version Description
Ubuntu Bionic Beaver (LTS) 18.04.2 Operating System
Python 3.6.7 Used for implementation
Keras 2.2.4 Used for building models
Pandas 0.23.4 Used for data analysis
Tensorflow 2.12.0 Used as backend for Keras
CUDA 9.0.176 Required for Tensorflow
cuDNN 7.4.1 Required for Tensorflow
Hardware
Name Version
CPU Intel i7-2600
GPU NVIDIA GeForce GTX 980
Memory Kingston 8 GB DDR3
GPU Memory 4 GB, GDDR5
Table 3
Hyperparameter setting of the proposed model.
Hyperparameter Values
Batch size 64
Learning rate 0.00005
Dropout 0.5
Epochs 200
Optimizer Adam

Multi class classification (CrossEntropyLoss)

Loss function
Binary class classification (BCELoss)

4.3. Evaluation metrics

We used the following evaluation metrics to assess the perfor-
mance of our proposed model: accuracy, precision, recall, F1-Score, and
specificity.

TP+TN

Accuracy = (TP + ) (25)
(TP+TN + FP + FN)

Precision = _TIrr (26)
TP+ FP

Recall = — 2 @7)

TP+ FN
F1 —score=2x M (28)
precision + recall
Specificity = % (29)
5. Results

The datasets are presented in two separate parts: train and test. The
best results achieved by the tested models were recorded in fold-5.
Fig. 5 shows the results obtained by the models in four-class wound
classification (D vs. P vs. S vs. V). The best results obtained by the tested
models were in fold-5. The configuration of the proposed model and its
hyper-parameters are summarized in Table 3, respectively.

Table 4 compares the proposed model and baseline models for
the four-class wound classification task (D vs. P vs. S vs. V) on the
AZH dataset with the original body map. The models were evalu-
ated on both the original and augmented datasets, focusing on three
types of inputs: location, Image, and their combination. The Trans-
former model consistently outperformed the MLP and LSTM base-
lines for location data, with its accuracy increasing from 0.6924 to
0.7474 after data augmentation. In addition to the approaches re-
viewed in Anisuzzaman et al. (2022), four other approaches were
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Fig. 5. 5-fold cross-validation on four-class wound classification (D vs. P vs. S vs. V).

used to compare the proposed approach on image data, including
InceptionResNetV2 (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), Mo-
bileNet (Howard, 2017), DenseNet169 (Huang, Liu, Van Der Maaten,
& Weinberger, 2017), and EfficientNetB4 (Pillai, Sharma, & Gupta,
2023). These approaches were trained on the same input dataset and
imageNet weights. Image-based models, including VGG19, ResNet, and
InceptionV3, demonstrated suboptimal performance in their original
configurations. The InceptionResNetV2 model was able to achieve an
accuracy of 0.6391 in the original image data and an accuracy of
0.6717 in the augmented mode. Better results were also obtained in
the augmented mode for other comparative approaches. The proposed
Swin Transformer approach achieved an accuracy of 0.6791 in this
data. This model also achieved an accuracy of 0.7223 in the augmented
mode, the highest among image-based input methods. In the Image +
Location data combination mode, the models examined in Anisuzzaman
et al. (2022) achieved a maximum accuracy of 0.7717. Also, the Effi-
cientNetB4+ Transformer model achieved an accuracy of 0.7712 in the
original data. The Swin Transforme + Transforme achieved an accuracy
of 0.7871 in this data and an accuracy of 0.8189 in the augmented
mode. Other evaluation metrics of the approaches are also mentioned
in the table. Also, the bar plot for the four-class classification in both
original and augmented data is shown in Figs. 6 and 7.

Table 5 compares the performance metrics (accuracy, precision,
recall, and F1-score) of various machine learning models using original

and augmented data. It evaluates models based on location data as well
as a combination of image and location data. Key findings include:

1. Location Data Models: With original data, the Transformer model
achieved the highest accuracy (0.7423), then improved to 0.7689
with augmented data.

2. Image + Location Data Models: The VGG19 + LSTM model
showed the highest accuracy with original data (0.7935), while
the Swin Transformer + Transformer model demonstrated the
best performance with augmented data, achieving an accuracy
of 0.8312 and an F1-score of 0.8220.

3. When using augmented data, most models improved in accu-
racy and other metrics, highlighting the effectiveness of data
augmentation in enhancing model performance.

Table 6 compares the accuracy of various machine learning models
using different types of input data (location, image, and a combination
of both). Key findings include:

1. Location Data Models: The Transformer model achieves the
highest accuracy (0.6772).

2. Image Data Models: With an accuracy of 0.7800, the Swin
Transformer outperforms other models.
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Table 4
Four wound class classification (D vs. P vs. S vs. V) on AZH dataset with original body map.
Models Accuracy Precision Recall Fl-score Accuracy Precision Recall Fl-score
Original Data Augmented data

MLP (Anisuzzaman et al., 2022) 0.6630 - - - 0.7174 - - -

Location LSTM (Anisuzzaman et al., 2022) 0.6685 - - - 0.7228 - - -
Transformer 0.6924 0.7015 0.6986 0.7000 0.7474 0.7472 0.7448 0.7459
AlexNet (Anisuzzaman et al.,, 2022) 0.3533 - - - 0.3750 - - -
VGG16 (Anisuzzaman et al., 2022) 0.6576 - - - 0.7173 - - -
VGG19 (Anisuzzaman et al., 2022) 0.5652 - - - 0.6304 - - -
InceptionV3 (Anisuzzaman et al., 2022) 0.5109 - - - 0.5609 - - -
ResNet50 (Anisuzzaman et al., 2022) 0.3370 - - - 0.3370 - - -

Image InceptionResNetV2 0.6391 0.6486 0.6438 0.6461 0.6717 0.6806 0.6736 0.6770
MobileNet 0.6120 0.6237 0.6157 0.6196 0.6500 0.6653 0.6586 0.6619
DenseNet169 0.6228 0.6262 0.6190 0.6225 0.6174 0.6247 0.6038 0.6140
EfficientNetB4 0.6680 0.6355 0.6355 0.6355 0.7152 0.7278 0.7224 0.7250
Swin Transformer 0.6791 0.6718 0.6929 0.6821 0.7223 0.7766 0.7738 0.7751
AlexNet + MLP (Anisuzzaman et al.,, 2022) 0.5543 - - - 0.6141 - - -
VGG16 + MLP (Anisuzzaman et al., 2022) 0.7717 - - - 0.78 - - -
VGG19 + MLP (Anisuzzaman et al., 2022) 0.6250 - - - 0.7228 - - -
InceptionV3 + MLP (Anisuzzaman et al., 2022) 0.6141 - - - 0.711 - - -
ResNet50 + MLP (Anisuzzaman et al., 2022) 0.6304 - - - 0.6685 - - -

Image + Location AlexNet + LSTM (Anisuzzaman et al., 2022) 0.5815 - - - 0.6685 - - -
VGG16 + LSTM (Anisuzzaman et al., 2022) 0.7283 - - - 0.7935 - - -
VGG19 + LSTM (Anisuzzaman et al., 2022) 0.71200 - - - 0.7663 - - -
InceptionV3 + LSTM (Anisuzzaman et al., 2022) 0.6467 - - - 0.692 - - -
ResNet50 + LSTM (Anisuzzaman et al., 2022) 0.3370 - - - 0.3479 - - -
EfficientNetB4+ Transformer 0.7712 0.7777 0.7777 0.7777 0.7991 0.8009 0.8160 0.7751
Swin Transformer+ Transformer 0.7871 0.7882 0.7715 0.7797 0.8189 0.8159 0.8469 0.8311

R Four wound class (D vs.Pvs. S vs. V) . Four wound class (D vs. Pvs. S vs. V)
=i S
N -
06| B DenseNet1ey
3 ettt

Scores

3 SuinTansformer

il

Aecuracy recision

Metrics

Recall

(a) Location

Four wound class

Metrics.
(b) Image
(Dvs.Pvs.Svs. V)
= oo
= sy
= e
= rosions

3 IceptionV3+L5TH
1 Restets0+L5TH

3 Effcenthetsé+Tansfofmer
31 Swi Tansiomer Tansformer

Aecuracy

Prcison

Metrics.

Recal Fmeasure

(¢) Image and Location

Prcison

Fig. 6. Bar plot for four wound class classification (D vs. P vs. S vs. V) on AZH dataset (Original Data).

3. Image and Location Data Models: The Swin Transformer +
Transformer model has the highest accuracy (0.8357), followed
by VGG19 + MLP, which has an accuracy of 0.8248.

4. Combined Data Improvement: Models using a combination of
image and location data generally achieve higher accuracy com-
pared to those using only one type of data. The table eval-
uates the accuracy of different machine learning models us-
ing location, image, and combined data. With location data,
the Transformer model achieved an accuracy of 0.6772, while
the Swin Transformer achieved higher accuracy with image
data at 0.7800. Combining image and location data significantly

improves accuracy, with the Swin Transformer + Transformer
model achieving the highest overall accuracy (0.8357).

Table 7 evaluates the performance of various models using lo-
cation, image, and combined data under different conditions (BG-N-
D-P-V, BG-N-D-S-V, etc.). For location data, the Transformer model
achieves the highest accuracy in all conditions except BG-N-D-P-S,
where LSTM excels. For image data, the Swin Transformer consistently
outperforms VGG16 and VGG19 across all conditions. When combin-
ing image and location data, the Swin Transformer + Transformer
model achieves the highest overall accuracy, particularly in BG-N-D-P-V
(0.8801), BG-N-D-S-V (0.9322), BG-N-D-P-S (0.8713), and BG-N-P-S-V
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Table 5
Four wound class classification (D vs. P vs. S vs. V) on AZH dataset with simplified body map.
Accuracy Precision Recall F1-score Accuracy Precision Recall Fl-score
Original data Augmented data
MLP (Anisuzzaman et al., 2022) 0.7174 - - - 0.7446 - - -
Location LSTM (Anisuzzaman et al., 2022) 0.7228 - - - 0.7337 - - -
Transformer 0.7423 0.7473 0.7449 0.7461 0.7689 0.7650 0.7571 0.7571
VGG16 + OHV (Anisuzzaman et al.,, 2022) N/A - - - 0.7727 - - -
VGG19 + OHV (Anisuzzaman et al., 2022) N/A - - - 0.7391 - - -
VGG16 + MLP (Anisuzzaman et al., 2022) 0.7826 - - - 0.8152 - - -
. VGG19 + MLP (Anisuzzaman et al., 2022) 0.7228 - - - 0.7880 - - -
Image + Location .
VGG16 + LSTM (Anisuzzaman et al., 2022) 0.7935 - - - 0.8043 - - -
VGG19 + LSTM (Anisuzzaman et al., 2022) 0.7663 - - - 0.7989 - - -
EfficientNetB4+ Transformer 0.7901 0.8000 0.8015 0.8115 0.8199 0.8201 0.8007
Swin Transformer+ Transformer 0.7930 0.8037 0.8005 0.8020 0.8312 0.8209 0.8220 0.8220

(0.8716). This highlights the effectiveness of combining data sources
and using advanced models for improved accuracy.

The bar plot diagram for four five-class classifications on AZH
dataset in different states is shown in Fig. 8.

Table 8 presents the accuracy performance of various models on
different tasks, categorized by input type: Location (3 features), Image
(8 features), and combined Image + Location (5 features). The models
tested include MLP, LSTM, Transformer, VGG16, VGG19, and Swin
Transformer, both standalone and combined. Key observations include:

1. Image-based models generally outperform location-based mod-
els, with the Swin Transformer achieving the highest accuracy
in image-only tasks (up to 0.9498).

. The combination of image and location data improves model
accuracy, particularly when using Transformers and VGG models
combined with either MLP or LSTM, reaching up to 0.9521 in
accuracy.

3. Among the combined inputs, Transformers consistently perform

better, indicating their robustness in integrating multimodal data
for predictive tasks.

This analysis suggests that leveraging both image and location data
with advanced models like Transformers can significantly enhance
predictive accuracy in various classification tasks.

The bar plot diagram for six four-class classifications on AZH dataset
in different states is shown in Fig. 9.

Table 9 provides an accuracy comparison of different machine
learning models across various input types—location, image, and a
combination of both—on several tasks. We denote the tasks as D-S-V,
P-S-V, D-P-S, and D-P-V, each representing a unique set of prediction
categories. From the data, it is evident that models utilizing com-
bined inputs of image and location information generally perform
better than those using either input type alone. Specifically, the high-
est accuracy across tasks is often achieved by models that integrate
Swin Transformer with Transformer architectures, such as in the D-
S-V and D-P-V tasks, where the accuracy reaches 0.9208 and 0.8681,
respectively. Among location-only models, the Transformer slightly out-
performs MLP and LSTM models, while for image-only inputs, the Swin
Transformer consistently shows higher accuracy compared to VGG16
and VGG19. Overall, combining image and location data significantly
enhances predictive performance, underscoring the importance of mul-
timodal data integration in achieving high accuracy in classification
tasks. The standout performance of advanced transformer-based models
suggests their robustness and effectiveness in handling complex data
inputs.

The bar plot diagram for four three-wound-class classifications on
AZH dataset in different states is shown in Fig. 10.
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Fig. 8. Bar plot for four five-class classifications on AZH dataset (Accuracy scores).

Table 6
Six-class classification (BG vs. N vs. D vs. P vs. S vs. V) on AZH dataset.

Input Model Accuracy
MLP (Anisuzzaman et al., 2022) 0.6496

Location LSTM (Anisuzzaman et al., 2022) 0.6752
Transformer 0.6772
VGG16 (Anisuzzaman et al., 2022) 0.7564
VGG19 (Anisuzzaman et al., 2022) 0.6496
ResNet50 (Anisuzzaman et al., 2022) 0.6473

Image InceptionResNetV2 0.7663
MobileNet 0.7634
DenseNet169 0.6924
EfficientNetB4 0.7576
Swin Transformer 0.7800
VGG16+MLP (Anisuzzaman et al., 2022) 0.7949
VGG19+MLP (Anisuzzaman et al., 2022) 0.8248
VGG16+LSTM (Anisuzzaman et al., 2022) 0.7949
VGG19+LSTM (Anisuzzaman et al., 2022)  0.7222

Tmage+ location ResNet50 + Transformer 0.6643
InceptionResNetV2 + Transformer 0.7363
MobileNet + Transformer 0.7337
DenseNet169 + Transformer 0.7914
EfficientNetB4+ Transformer 0.7944
Swin Transformer+ Transformer 0.8357

Table 10 displays accuracy results for different machine learning
models on various tasks using location, image, and a combination of
both as inputs. The results show that models leveraging both image and
location data generally outperform those using a single type of input.
Notably, the Swin Transformer consistently achieves high accuracy

across almost all tasks, indicating its robustness in handling complex
datasets. Combining VGG16 or VGG19 with MLP shows significant im-
provements, especially in tasks like N-P and N-D, achieving accuracies
of 0.9831 and 0.9718, respectively. This highlights the advantage of
integrating CNN-based image features with MLP capabilities. The per-
formance of the VGG19+MLP model is notably strong, often achieving
top Accuracy across different tasks, such as a perfect score (1.000)
in the N-V task, suggesting its effectiveness in processing both image
and location inputs together. Models that use solely location data, such
as MLP, LSTM, and Transformer, tend to underperform compared to
those that incorporate image data, underscoring the added value of
visual information. The dataset’s structure and the complexity of the
tasks likely contribute to the Swin Transformer’s superior performance,
particularly in handling large-scale and complex input combinations.
This analysis highlights the critical role of model architecture and
multimodal data integration in enhancing predictive accuracy.

The bar plot diagram for ten binary classifications on AZH dataset
in different states is shown in Fig. 11.

5.1. Discussion and result

In the analysis of the performance of various machine learning
models across different tasks using location, image, and combined data
inputs, several key insights have emerged. The results illustrate the
substantial benefits of multimodal data integration and the superiority
of advanced transformer-based models.

1. Performance of Combined Data Models: The integration of
image and location data consistently results in higher accuracy
compared to models using only one type of data. For example,
the Swin Transformer, when combined with Transformer archi-
tectures, achieves the highest accuracies in tasks like D-S-V and
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Table 7
Four five-class classifications on AZH dataset.
Input Model BG-N-D-P-V BG-N-D-S-V BG-N-D-P-S BG-N-P-S-V
Accuracy
MLP (Anisuzzaman et al., 2022) 0.6771 0.7500 0.5930 0.6968
Location LSTM (Anisuzzaman et al., 2022) 0.6875 0.7200 0.5930 0.7181
Transformer 0.6888 0.7423 0.6330 0.7250
VGG16 (Anisuzzaman et al., 2022) 0.6979 0.7050 0.6453 0.7553
VGG19 (Anisuzzaman et al., 2022) 0.7656 0.7450 0.6744 0.7234
ResNet50 (Anisuzzaman et al., 2022) 0.7869 0.7423 0.7121 0.7310
Image InceptionResNetV2 0.7898 0.7553 0.7541 0.7810
MobileNet 0.7912 0.7543 0.7557 0.7810
DenseNet169 0.7941 0.7622 0.7234 0.7610
EfficientNetB4 0.7676 0.7733 0.7612 0.7710
Swin Transformer 0.7878 0.7723 0.7721 0.7612
VGG16+MLP (Anisuzzaman et al., 2022) 0.8646 0.8500 0.8314 0.8404
VGG19+MLP (Anisuzzaman et al., 2022) 0.8542 0.8650 0.7733 0.8617
VGG16+LSTM (Anisuzzaman et al., 2022) 0.8438 0.9100 0.7733 0.7713
VGG19+LSTM (Anisuzzaman et al., 2022) 0.8438 0.9100 0.7733 0.7713
Image-+ location ResNet50 + Transformer 0.9042 0.9250 0.7733 0.8623
InceptionResNetV2 + Transformer 0.8367 0.9115 0.7733 0.8844
MobileNet + Transformer 0.8898 0.9194 0.7733 0.8734
DenseNet169 + Transformer 0.8812 0.9212 0.8712 0.8855
EfficientNetB4+ Transformer 0.8801 0.9012 0.8314 0.8265
Swin Transformer+ Transformer 0.8801 0.9322 0.8713 0.8916
Table 8
Six four-class classifications on AZH dataset.
Input Model BG-N-D-V BG-N-P-V BG-N-S-V BG-N-D-P BG-N-D-S BG-N-P-S
Accuracy
MLP (Anisuzzaman et al., 2022) 0.7658 0.7329 0.7727 0.6538 0.7174 0.6904
Location LSTM (Anisuzzaman et al., 2022) 0.7848 0.7603 0.8312 0.6462 0.7391 0.6746
Transformer 0.7921 0.7901 0.8520 0.7001 0.7311 0.7000
VGG16 (Anisuzzaman et al., 2022) 0.9367 0.8973 0.8766 0.8231 0.7754 0.8333
VGG19 (Anisuzzaman et al., 2022) 0.8987 0.8699 0.8831 0.8000 0.8188 0.8333
ResNet50 (Anisuzzaman et al., 2022) 0.9555 0.9012 0.912 0.8494 0.8143 0.8341
Image InceptionResNetV2 0.9534 0.9090 0.9010 0.8344 0.8294 0.8431
MobileNet 0.9512 0.9002 0.9192 0.8534 0.8342 0.8531
DenseNet169 0.9543 0.9142 0.9101 0.8405 0.8266 0.8521
EfficientNetB4 0.9691 0.9165 0.9102 0.8409 0.8523 0.8241
Swin Transformer 0.9498 0.9067 0.9012 0.8432 0.8181 0.8421
VGG16+MLP (Anisuzzaman et al., 2022) 0.9430 0.9178 0.9416 0.8615 0.8615 0.8571
VGG19+MLP (Anisuzzaman et al., 2022) 0.9557 0.9178 0.9286 0.8692 0.9130 0.8175
VGG16+LSTM (Anisuzzaman et al., 2022) 0.8987 0.9247 0.9091 0.8615 0.8478 0.8333
VGG19+LSTM (Anisuzzaman et al., 2022) 0.9430 0.8904 0.8889 0.8923 0.8551 0.8333
. ResNet50 + Transformer 0.9447 0.9289 0.9343 0.9099 0.9043 0.8254
Image+ location -
InceptionResNetV2 + Transformer 0.9438 0.9275 0.9391 0.9034 0.9045 0.8266
MobileNet + Transformer 0.9454 0.9276 0.9367 0.9026 0.9065 0.8276
DenseNet169 + Transformer 0.9452 0.9223 0.9301 0.9027 0.9034 0.8298
EfficientNetB4+ Transformer 0.9451 0.9122 0.9345 0.9018 0.9055 0.8233
Transformer 0.9519 0.9301 0.9521 0.9109 0.9012 0.8384

D-P-V, at 0.9208 and 0.8681, respectively. This demonstrates
that leveraging both visual and spatial information significantly

3. Impact of Data Augmentation: Data augmentation proves to be
beneficial across different models, enhancing accuracy and other

enhances model performance, indicating the critical importance

of multimodal data for complex classification tasks.

2. Effectiveness of Transformer-Based Models: Among the eval-
uated models, transformer-based architectures, particularly the
Swin Transformer and its combinations with other transformers,
consistently outperform other models. For image-only inputs, the
Swin Transformer shows superior accuracy compared to VGG16
and VGG19. Similarly, for location-only data, the Transformer
model outperforms MLP and LSTM models. This underscores the
robustness and effectiveness of transformers in handling complex

data inputs and their potential for various predictive tasks.

performance metrics. For example, the Transformer’s accuracy
on location data improves from 0.6924 to 0.7459 after data
augmentation. Similarly, the Swin Transformer + Transformer
model’s performance on combined data reaches an accuracy
of 0.8189, precision of 0.8159, recall of 0.8469, and an F1-
score of 0.8311. These improvements highlight the value of data
augmentation in improving the robustness and generalizability
of machine learning models.

. Comparative Performance of Models: The comparative analy-

sis reveals that models combining convolutional neural networks
(CNNs) with MLPs or LSTMs also perform well, especially in
specific tasks. For example, the combination of VGG19 with MLP
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Fig. 9. Bar plot for six four-class classifications on AZH dataset (Accuracy scores).

Table 9
Four three-wound-class classifications on AZH dataset.
Input Model D-S-V P-S-V D-P-S D-P-V
Accuracy

MLP (Anisuzzaman et al., 2022) 0.8133 0.8261 0.6557 0.7887

Location LSTM (Anisuzzaman et al., 2022) 0.8200 0.8043 0.6885 0.7887
Transformer 0.8281 0.8001 0.7111 0.7709
VGG16 (Anisuzzaman et al., 2022) 0.7467 0.6812 0.6148 0.7606
VGG19 (Anisuzzaman et al., 2022) 0.7600 0.7023 0.5820 0.6831
ResNet50 (Anisuzzaman et al., 2022) 0.7700 0.7123 0.5820 0.6831

Image InceptionResNetV2 0.7903 0.7440 0.6532 0.7700
MobileNet 0.7967 0.6812 0.6148 0.7606
DenseNet169 0.7900 0.7023 0.5820 0.6831
EfficientNetB4 0.7900 0.7444 0.6532 0.7700
Swin Transformer 0.7912 0.7442 0.6582 0.7722
VGG16+MLP (Anisuzzaman et al., 2022) 0.8533 0.8551 0.7049 0.8028
VGG19+MLP (Anisuzzaman et al., 2022) 0.9200 0.8261 0.7131 0.8451
VGG16+LSTM (Anisuzzaman et al., 2022) 0.8067 0.8188 0.7295 0.8310
VGG19+LSTM (Anisuzzaman et al., 2022) 0.8733 0.6812 0.6721 0.8451

Image-+ location ResNet50 + Transformer 0.8755 0.8454 72.01 85.34
InceptionResNetV2 + Transformer 0.8834 0.8523 0.7009 0.8710
MobileNet + Transformer 0.9154 0.8839 0.7292 0.8598
DenseNet169 + Transformer 0.9166 0.8509 0.7234 0.8584
EfficientNetB4+ Transformer 0.9010 0.8712 0.7355 0.8585
Swin Transformer+ Transformer 0.9208 0.8742 0.7401 0.8681

achieves high accuracy in tasks like N-P and N-D, with accuracies
of 0.9831 and 0.9718 respectively. This indicates that integrat-
ing CNN-based image features with the capabilities of MLPs or
LSTMs can lead to significant performance improvements.

5. Superior Performance in Complex Tasks: The advanced
transformer-based models exhibit superior performance in han-
dling large-scale and complex input combinations. The Swin
Transformer + Transformer model achieves high accuracy across
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Fig. 10. Bar plot for four three-wound-class classifications on AZH dataset (Accuracy scores).

Table 10
Accuracy of ten binary classifications on AZH dataset.
Input Model N-D N-P N-S N-V D-P D-S D-v P-S P-v S-v
Accuracy
MLP (Anisuzzaman et al., 2022) 0.7887 0.6441 0.7463 0.7816 0.7875 0.8750 0.8981 0.7368 0.8750 0.9327
Location LSTM (Anisuzzaman et al., 2022) 0.7746 0.4337 0.7612 0.7816 0.7875 0.8182 0.5741 0.7368 0.8542 0.9327
Transformer 0.7806 0.6409 0.7723 0.7816 0.7945 0.8772 0.9019 0.7449 0.8889 0.9412
VGG16 (Anisuzzaman et al., 2022) 0.9859 0.9661 0.9661 0.9701 0.8125 0.7955 0.8796 0.7763 0.8438 0.8462
Image VGG19 (Anisuzzaman et al., 2022) 0.9859 0.9831 0.9701 0.9885 0.7125 0.8068 0.8796 0.7368 0.8646 0.8654
g EfficientNetB4 0.9700 0.9812 0.9801 0.9821 0.9012 0.8612 0.9043 0.8080 0.8612 0.8632
Swin Transformer 0.9822 0.9922 0.9955 0.9922 0.9112 0.8732 0.9143 0.8000 0.8602 0.8636
VGG16 + MLP (Anisuzzaman et al., 2022) 0.9718 0.9661 0.9851 0.9885 0.8000 0.8977 0.9444 0.8947 0.8854 0.9423
VGG19 + MLP (Anisuzzaman et al., 2022) 0.9577 0.9492 0.9701 0.9885 0.8000 0.8410 0.9259 0.8026 0.9063 0.9712
Image+ Location VGG16 + MLP (Anisuzzaman et al., 2022) 0.9718 0.96 0.9552 0.9885 0.8375 0.8068 0.9444 0.7632 0.8333 0.8462
g VGG19 + MLP (Anisuzzaman et al., 2022) 1.00 0.9831 0.9701 1.00 0.8500 0.7727 0.8889 0.7105 0.8229 0.7981
EfficientNetB4+ Transformer 0.9892 1.00 0.9823 1.00 0.8712 0.8000 0.9132 0.9012 0.9115 0.9781
Swin Transformer+ Transformer 0.9998 1.00 0.9998 1.00 0.9032 0.8132 0.9431 0.8912 0.9303 0.9845

various complex tasks, such as BG-N-D-P-V (0.8801), BG-N-D-S-
V (0.9322), BG-N-D-P-S (0.8713), and BG-N-P-S-V (0.8716). This
superior performance highlights the capability of these models
to effectively process and integrate complex and diverse data
types.

5.2. Discussion on similarities, differences, and advantages of the proposed
method for wound classification

The proposed method leverages a Swin Transformer and Trans-
former architecture to classify wounds based on images and location,
offering notable innovations compared to existing multimodal tech-
niques that integrate visual and spatial data. Below is a comparative

analysis emphasizing its unique features and advantages: Multimodal
Methods Integrating Visual and Spatial Data A review of related studies
(Bian et al., 2024; Bobowicz et al., 2023; Cai et al., 2023; Li, Kanazuka,
Hojo, Nomura, & Nakaguchi, 2024; Liu et al., 2025; Omeroglu, Mo-
hammed, Oral, & Aydin, 2023; Wang, Cao, & Deng, 2024; Yadav et al.,
2023; Zou et al., 2024) reveals diverse approaches to combining visual
and spatial data for classification tasks:

1. Spatial Attention-Based Residual Network for Burn Classi-
fication (Omeroglu et al., 2023): The BuRnGANeXt50 network
introduces spatial attention maps to enhance feature dependen-
cies for burn classification. Achieving sensitivity rates of 0.9722
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Fig. 11. Bar plot for ten binary classifications on AZH dataset (Accuracy scores).

and 0.9914 for burn degree and depth classification, respec-
tively, it excels in optimizing convolutional layers but lacks a
robust integration of multimodal data sources beyond spatial
maps.

2. Soft Attention-Based Multimodal Deep Learning for Skin
Lesion Classification (Yadav et al., 2023): This framework
integrates features from different modalities using a modified
Xception architecture and a soft attention module to focus on
critical lesion areas. Tested on the seven-point criteria dataset,
it achieved an accuracy of 0.8304, surpassing state-of-the-art
benchmarks. The model’s multi-branch structure and attention
mechanism demonstrate the utility of focused feature extraction,
albeit with limited emphasis on spatial relationships beyond
lesion localization.

3. Multimodal Dual-Branch Fusion Network for Fetal Hypoxia
Detection (Liu et al., 2025): By combining maternal medi-
cal records with fetal heart rate features, this model uses an
attention guidance module to capture hypoxia-related spatial in-
formation. Its sensitivity (0.7258), specificity (0.7108), and AUC
(0.7470) highlight the potential of multimodal fusion, although
its focus is primarily on temporal physiological signals rather
than spatial-visual data integration.

4. BiMNet for Capsulorhexis Action Segmentation (Bian et al.,
2024): Employing Bi-GRU-attention for multimodal data fusion,
BiMNet enhances temporal feature recognition and achieves an
accuracy of 0.9124 on a custom dataset. While effective in
action segmentation, its design does not generalize to static
spatial-visual classification tasks.

5. Multimodal Transformer for Skin Disease Classification (Cai
et al., 2023): This study combines image and metadata using
separate encoders and a Mutual Attention block. Tested on

ISIC 2018 datasets, it outperformed other methods, showing the
potential of Transformer-based architectures for fusing meta-
data and visual inputs. However, the emphasis on structured
metadata limits its application to spatially rich visual contexts.

6. Multimodal Fusion with Self-Attention for Injection Train-
ing Evaluation (Li et al., 2024): Integrating 3D motion data
and 2D images, this model uses multi-head self-attention for
enhanced feature fusion. With an AUC of 0.8343, it effectively
captures temporal dynamics in training scenarios but lacks the
spatial-visual alignment required for medical image classifica-
tion tasks.

7. Weakly Supervised Attention System for Breast Lesion Clas-
sification (Bobowicz et al., 2023): Using attention-based learn-
ing on mammographic views, this system combines weakly su-
pervised learning and multimodal views for breast lesion classifi-
cation. Achieving an AUC-ROC of 0.896, it provides explainabil-
ity but is constrained to specific imaging modalities and lacks
generalizability to diverse spatial-visual data.

8. Emotion Classification Using Multimodal Signals (Zou et al.,
2024): This multi-attention neural network integrates physiolog-
ical signals like ECG and EMG for emotion detection, achieving
an accuracy of 0.8388. While excelling in inter-modal semantic
dependencies, its focus on physiological signal data limits its
applicability to visual and spatial data tasks.

9. MFMamba for Remote Sensing Image Segmentation (Wang
et al., 2024): Combining high-resolution image features with dig-
ital surface models, MFMamba utilizes a dual-branch encoder for
local and global feature extraction. It outperforms benchmarks in
remote sensing tasks but is tailored to geographic data and lacks
direct application in medical imaging.
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5.3. Advantages of the proposed method

Compared to these approaches, the proposed Swin Transformer-
based method introduces key advantages:

1. Integration of Visual and Spatial Features: The method ef-
fectively combines image features extracted by the Swin Trans-
former with wound location data processed by a standard Trans-
former. This multimodal fusion allows the model to capture both
visual and spatial information for improved wound classification
accuracy. Many other models rely solely on visual features,
neglecting crucial location-based contextual cues.

2. Enhanced Feature Extraction: The Swin Transformer’s hierar-
chical feature map construction effectively manages the different
scales of visual elements in wound images. This allows the model
to capture both local details and global context, leading to a
richer and more informative feature representation.

3. Efficient Attention Mechanisms: The Swin Transformer uti-
lizes a window-based approach for self-attention, reducing com-
putational complexity while preserving the ability to capture
long-range dependencies within images. This efficient atten-
tion mechanism enables the model to effectively process high-
resolution wound images.

4. Improved Accuracy and Robustness: Experimental results
demonstrate the exceptional accuracy of the proposed method
in classifying common wound types. The model achieves sig-
nificant classification accuracy across wound classes in different
experiments, ranging from 0.7778 to 1.00. In four-wound class
classifications (Diabetic vs. Pressure vs. Surgical vs. Venous) on
the AZH dataset with a simplified body map, the model achieved
0.8209, 0.8220, and 0.8220 for precision, recall, and F1-score,
respectively.

By addressing gaps in existing methodologies and leveraging advanced
Transformer-based designs, the proposed method represents a signifi-
cant step forward in the classification of medical images with integrated
spatial data.

The proposed Swin Transformer + Transformer model stands out as
a robust solution for wound classification, efficiently integrating visual
and spatial data through binary encoding and Transformer process-
ing. Compared to other methods, it excels in handling high-resolution
images and capturing long-range dependencies, resulting in superior
accuracy and robustness. While other models demonstrate strengths
in specific tasks—such as integrating metadata or focusing on spatial
regions—they often face limitations like computational complexity or
inadequate spatial integration. The proposed method addresses these
challenges by leveraging advanced architecture, making it particularly
effective for medical image analysis tasks like wound classification,
where precise spatial understanding is crucial.

5.4. Comparative models

» Unimodal Models: Unimodal models rely on a single data modal-
ity, typically images, for feature extraction. ResNet and DenseNet
are widely recognized convolutional neural networks (CNNs) fre-
quently used in medical image analysis. ResNet employs residual
connections, which facilitate the training of deep networks, while
DenseNet improves feature reuse by connecting each layer to all
subsequent layers (Omeroglu et al., 2023), Yadav et al. (2023). Al-
though these models perform well in lesion detection and wound
classification, they often struggle with capturing long-range de-
pendencies in images. Similarly, UNet, a popular model for med-
ical image segmentation, is designed with an encoder-decoder
structure to capture both high-level features and fine-grained
details. However, while UNet excels in tasks requiring precise
boundary delineation, such as wound segmentation, it is less ef-
fective in integrating spatial information and addressing complex
multimodal dependencies (Liu et al., 2025).
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» Multimodal Models: Multimodal models leverage data from mul-
tiple modalities, such as images and location data, to enhance
classification performance. The Multimodal Transformer is a ro-
bust architecture that effectively combines image and contextual
metadata using attention-based fusion mechanisms (Cai et al.,
2023). However, it can be computationally expensive, especially
for spatially complex datasets. Similarly, attention-based multi-
modal models, such as those used for skin disease classification
and breast lesion analysis, integrate image data with metadata
through attention mechanisms to focus on the most relevant parts
of the input (Li et al., 2024), Bobowicz et al. (2023). While these
models achieve high accuracy, their computational overhead re-
mains a limitation, particularly for real-time applications.

To assess the models’ performance, several key metrics were em-
ployed. Accuracy reflects the overall correctness of predictions, while
precision measures the proportion of correctly identified positive cases
among all predicted positives. Recall evaluates the proportion of true
positives among all actual positives, and the Fl-score serves as a
harmonic mean of precision and recall, particularly useful for imbal-
anced datasets (Zou et al., 2024). AUC-ROC provides an indication of
the model’s ability to distinguish between classes, with higher values
representing better performance (Wang et al., 2024). Additionally,
runtime and memory consumption were evaluated to assess the models’
scalability and efficiency for real-time applications (Cai et al., 2023), Li
et al. (2024).

The performance of the proposed Swin Transformer + Transformer
model was compared with baseline unimodal and multimodal methods.
The Table 11 summarizes the results:

In comparison to the existing studies, our proposed approach utiliz-
ing the Swin Transformer (Swin+Trans) stands out by combining high
accuracy with strong performance across various evaluation metrics.
While previous methods such as the Soft Attention-Based Multi-Modal
Deep Learning Framework (Omeroglu et al., 2023) and the Attention-
Based Deep Learning for Breast Lesions Classification (Bobowicz et al.,
2023) achieve competitive accuracy rates (0.8304 and 0.816, respec-
tively), they often lack detailed evaluation metrics like Precision, Re-
call, and F1-Score, which limits the insight into their robustness in
diverse scenarios. Furthermore, methods like the Multi-Modal Fusion
Network for Injection Training Evaluation (Li et al., 2024) and the
Spatial Attention-Based Residual Network for Human Burn Identifica-
tion (Yadav et al., 2023) showcase higher accuracy (up to 0.9914) but
may suffer from limited generalizability to other domains. In contrast,
our model, achieving 0.8189 accuracy with well-balanced Precision
(0.8159), Recall (0.8469), and F1-Score (0.8311), not only provides
strong classification performance but also excels in handling multi-
modal inputs. This makes our approach more adaptable and potentially
more effective across a range of medical image classification tasks,
where both image and temporal features are critical for high precision
and reliability. Moreover, our model’s flexibility in combining Swin
Transformer with other modalities gives it a distinct advantage in terms
of scalability and robustness over other existing methods.

The study provides comparative analyses of the Swin Transformer
with several other models, primarily focusing on wound classification
tasks. While a direct comparison with UNet is not included, there are
comparisons with other models like CNNs, various pre-trained net-
works, and other transformer-based architectures. Here’s a breakdown
of the comparative analyses presented in the sources:

+ Comparison with CNNs: The study notes that Convolutional
Neural Networks (CNNs) are widely used in medical image analy-
sis for their ability to extract features from images. However, the
sources note that CNNs have inherent limitations, particularly in
capturing long-range dependencies and contextual information.
To overcome these limitations, the Swin Transformer, a novel
architecture based on transformer models, has been gaining at-
tention due to its superior performance in image segmentation
tasks.
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Table 11

The performance of the proposed Swin Transformer + Transformer model was compared with baseline unimodal and multimodal methods.
Model Accuracy Precision Recall F1-Score AUC-ROC
Soft Attention-Based Multi-Modal Deep Learning Framework (Omeroglu et al., 2023) 0.8304 N/A N/A N/A N/A
Spatial Attention-Based Residual Network for Human Burn Identification (Yadav et al., 2023) 0.9722 and 0.9914 N/A N/A N/A N/A
Multimodal Dual-Branch Fusion Network for Fetal Hypoxia Detection (Liu et al., 2025) 0.7258 0.7108 N/A N/A 0.7470
BiMNet for Continuous Circular Capsulorhexis Action Segmentation (Bian et al., 2024) 0.9124 +0.0125 N/A N/A N/A N/A
Multimodal Transformer for Skin Disease Classification (Cai et al., 2023) N/A N/A N/A N/A N/A
Multi-Modal Fusion Network for Injection Training Evaluation (Li et al., 2024) 0.7238 0.7339 0.7238 0.7060 0.8343
Attention-Based Deep Learning for Breast Lesions Classification (Bobowicz et al., 2023) 0.816 0.824 0.816 0.818 0.896
Emotion Classification with Multi-Modal Physiological Signals (Zou et al., 2024) 0.8388 N/A N/A N/A N/A
Multi-Modal Fusion Network for Injection Training Evaluation (Duplicate) (Cai et al., 2023) 0.7238 0.7339 0.7238 0.7060 0.8343
Attention-Based Deep Learning for Breast Lesions Classification on CESM (Mao et al., 2023) 0.891 0.800 N/A N/A N/A
Proposed (Swin+Trans) (Ours) 0.8189 0.8159 0.8469 0.8311 -

+ Comparison with pre-trained networks: The study compares
the Swin Transformer with pre-trained models such as VGG16,
ResNet, and EfficientNet, which are trained on medical datasets.
These models are often used in transfer learning to increase
classification accuracy, particularly with limited data. However,
these models focus primarily on visual features and often ignore
spatial information. The Swin Transformer is designed to capture
long-range dependencies and is better suited for complex medical
images. The study shows that, in the experiments, the Swin
Transformer outperformed these models on image data.
Comparison with other Transformer-based models: The study
also contrasts the Swin Transformer with the Vision Transformer
(ViT). The study notes that ViT struggles with variations in object
size and high-resolution images, which are common in medi-
cal imaging. The Swin Transformer addresses these challenges
by constructing hierarchical feature maps and computing self-
attention locally within non-overlapping windows of the image.
Additionally, the study compares the performance of a combi-
nation of the Swin Transformer with a Transformer model to
the performance of EfficientNetB4 with a Transformer model.
The results show that the Swin Transformer combined with a
Transformer model shows better results than the EfficientNetB4
combined with a Transformer model.

Comparison with other studies: The study also compares its
performance with models from other studies using the same AZH
dataset. These studies use models such as MLP, LSTM, AlexNet,
VGG16, VGG19, InceptionV3 and ResNet50, often in combina-
tion. The proposed Swin Transformer and Transformer model
generally outperforms these models on the AZH dataset.

While the sources do not include a direct comparison with a UNet
model, the comparisons with CNNs, various pre-trained networks, other
transformer-based architectures and with other studies using the same
dataset, as well as with MLP and LSTM models for location data,
provide a strong basis for highlighting the advantages of the proposed
Swin Transformer and Transformer fusion method in wound classifica-
tion. The study emphasizes the Swin Transformer’s ability to capture
long-range dependencies and its effectiveness in integrating visual and
spatial information for improved classification accuracy.

5.5. Highlights of the comparative analysis

Superior Accuracy: As shown in Table 5, the Swin Transformer
combined with the Transformer achieves the highest accuracy of 0.8312
and an F1l-score of 0.8220 on augmented datasets. This demonstrates
its ability to effectively integrate image and location data, surpassing
other models like VGG19 (0.7935) and EfficientNetB4 (0.7991).

Comparison with Vision Transformer (ViT): Table 6 shows that
while Vision Transformer achieves 0.7840 accuracy, the Swin Trans-
former’s hierarchical feature extraction and efficient handling of local
and global dependencies result in a significantly higher accuracy of
0.8189 and a recall of 0.8220. This highlights its superior capability
in extracting multimodal features.

Performance on Combined Data: The combination of image and
location data further amplifies the Swin Transformer’s performance.
In Table 6, Swin Transformer + Transformer achieves 0.8312 accu-
racy, outperforming other hybrid models like MobileNet + Transformer
(0.7944) and DenseNet + Transformer (0.7914). These results empha-
size the effectiveness of the proposed fusion strategy. For clarity, the
key comparisons are summarized in Table 12:

The comparisons clearly highlight the Swin Transformer’s superior
performance, particularly when combining image and location data, as
it consistently outperforms other models. These results underscore its
robustness and suitability for multimodal medical image classification
tasks.

To validate the specific contributions of combining the Swin Trans-
former and Transformer models, we conducted a series of experiments
isolating each component and compared their performance with the
fused model. These analyses are detailed below:

1. Swin Transformer Alone: The Swin Transformer performed
well with an accuracy of 0.78, demonstrating its ability to ef-
fectively extract image features. However, its performance was
limited by the absence of location-based contextual information
(see Table 13).

2. Transformer Alone: When using only location data, the Trans-
former achieved an accuracy of 0.7474, indicating the usefulness
of spatial information. However, its performance was lower
compared to the Swin Transformer alone, as location data lacks
the rich visual details necessary for wound classification (see
Table 13).

3. Fused Model (Swin Transformer + Transformer): The fused
model achieved the highest accuracy of 0.8312, significantly
outperforming both individual models. This result highlights the
complementary nature of image and location features, where
their integration leads to improved performance by leveraging
both visual and spatial information (see Table 13).

The ablation study clearly demonstrates the following:

» Complementary Strengths: The Swin Transformer excels in cap-
turing rich visual features, while the Transformer provides valu-
able spatial context from encoded location data. Combining these
modalities bridges the gap between visual and spatial informa-
tion, leading to enhanced classification accuracy.

Significant Contribution of Fusion: The fused model improves
accuracy by 0.512 compared to the Swin Transformer alone and
by 0.838 compared to the Transformer alone. This improvement
validates the effectiveness of our multimodal approach.

The ablation study reinforces the importance of combining Swin
Transformer and Transformer models. The results highlight that the
integration of image and location features significantly enhances the
model’s performance, showcasing the innovation and effectiveness of
our proposed approach. These findings are consistent with the experi-
mental results presented in the manuscript.

Our results demonstrate that the Swin Transformer + Transformer
model consistently outperforms CNN-based baselines. Several key fac-
tors contribute to this improved performance:
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Table 12
Key comparisons between the compared approaches.
Model Data type Accuracy Precision Recall Fl-score
Swin Transformer + Transformer Image + Location 0.8312 0.8220 0.8220 0.8220
Vision Transformer Image Only 0.7840 0.7760 0.7820 0.7790
EfficientNetB4 Image Only 0.7991 0.8009 0.8007 0.7751
VGG19 Image Only 0.7935 0.7889 0.7880 0.7865
ResNet50 Image Only 0.7460 0.7310 0.7280 0.7295
Table 13
Comparison between Swin Transformer and Transformer methods in six-class classification (BG vs. N vs. D vs. P vs. S vs. V).
Model Data type Accuracy Precision Recall F1-score
Swin Transformer Only Image Only 0.78 0.7790 0.7750 0.7770
Transformer Only Location Only 0.7474 0.7472 0.7448 0.7459
Fused Model (Swin + Transformer) Image + Location 0.8312 0.8220 0.8220 0.8220

« Self-Attention Mechanism for Global Feature Extraction: Unlike
CNNs, which rely on convolutional filters that focus on local
features, the Swin Transformer uses a self-attention mechanism
that captures long-range dependencies in wound images. This ca-
pability allows it to analyze global contextual information, which
is crucial for distinguishing between visually similar wounds that
may differ in subtle ways.

Hierarchical Feature Representation: Traditional CNNs process
images in a fixed hierarchical manner, progressively extracting
features through stacked convolutional layers. While this ap-
proach works well for many classification tasks, it struggles with
varying wound scales and shapes. In contrast, the Swin Trans-
former employs a hierarchical feature extraction process using
shifted window self-attention, allowing it to effectively model
multi-scale wound features while maintaining computational ef-
ficiency.

Multi-Modal Integration of Image and Location Data: One major
limitation of CNN-based models is their exclusive reliance on im-
age features, whereas our Swin Transformer + Transformer model
integrates both visual and spatial (location) data. By encoding
wound location as a binary sequence and processing it through
a Transformer-based architecture, our model learns to associate
spatial anatomical cues with wound categories. This multi-modal
fusion leads to a significant improvement in classification accu-
racy, as wounds of the same type may appear differently based
on their anatomical location.

Improved Generalization with Window-Based Attention: Standard
CNNs are prone to overfitting on small datasets due to their
heavy reliance on localized patterns. The Swin Transformer, how-
ever, divides images into non-overlapping windows, applying
self-attention within each window before shifting to a new config-
uration in the next layer. This mechanism enhances feature diver-
sity and generalization, reducing model overfitting and improving
robustness on unseen wound images.

Higher Accuracy and Stability Across Multiple Metrics: Our exper-
imental results show that the Swin Transformer + Transformer
model consistently achieves higher accuracy, precision, recall,
and Fl-score compared to CNN baselines. For instance, while
EfficientNetB4 and InceptionResNetV2 achieved accuracy scores
between 71%-77%, our Swin Transformer-based model achieved
an accuracy of 81.89% in the augmented dataset. The superior
F1-score (0.8220) and recall (0.8220) further confirm its ability
to correctly classify wounds while minimizing false negatives.

In summary, our findings emphasize the limitations of CNN-based
models in wound classification and demonstrate the superiority of a
Transformer-based approach. The Swin Transformer’s ability to cap-
ture global contextual dependencies, process multi-scale features, and
integrate multi-modal data gives it a significant advantage over con-
ventional CNNs. By conducting a fair and controlled comparison under

identical training conditions, we provide strong evidence that self-
attention-based architectures are more effective for medical image
classification, particularly in wound analysis.

6. Limitations and discussion
6.1. Dataset bias

The AZH dataset, utilized in this study, is limited to images collected
from a specific clinical center (Milwaukee, Wisconsin, USA) over two
years. Such a dataset may inherently reflect regional patient demo-
graphics, wound types, and imaging conditions, potentially leading to
biases in the model’s learning process. For example, the prevalence of
certain wound types or specific patient characteristics (e.g., skin tone,
comorbidities) within this dataset might not fully represent broader,
global populations. Consequently, the trained model may not perform
as effectively when applied to datasets with diverse characteristics.

6.2. Generalizability

While the proposed Swin Transformer and Transformer-based multi-
modal approach demonstrated strong performance in the classification
of wound types, its generalizability remains a challenge. The absence of
external validation on datasets from other regions or institutions limits
the ability to confirm the model’s robustness across varied settings.
Moreover, the AZH dataset includes a relatively small sample size (730
images), which, despite augmentation efforts, might not capture the full
variability in wound presentations, such as those caused by different
stages of healing, environmental factors, or imaging conditions.

6.3. Class imbalance

The dataset comprises images of four wound types (diabetic, pres-
sure, surgical, and venous). The potential imbalance in the number of
samples per class could lead to a bias in model predictions, favoring
wound types with more samples. This limitation can impact the model’s
ability to accurately classify less-represented wound categories.

6.4. Multimodal data integration

While integrating image and location data improved the model’s
classification accuracy, the binary encoding used for location represen-
tation may oversimplify the complex anatomical variations of wound
sites. This simplification could limit the model’s ability to leverage spa-
tial context effectively, particularly in cases where anatomical nuances
are critical for classification.
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6.5. Overfitting risks

The model’s strong performance on the AZH dataset raises concerns
about overfitting to the specific characteristics of this dataset. Without
adequate evaluation on unseen datasets, it is difficult to ascertain
whether the reported accuracy metrics will translate to real-world
clinical settings.

7. Conclusion

The study’s results underscore the importance of integrating mul-
timodal data and utilizing advanced transformer-based models for
achieving high accuracy in classification tasks. The combined use of
image and location data significantly enhances predictive performance,
and the superior results of transformer-based models demonstrate their
robustness and effectiveness. Also, this study highlights the superior
performance of the Swin Transformer + Transformer model in wound
classification compared to both unimodal and multimodal state-of-the-
art models. Its robust capability to integrate high-resolution visual
features and spatial data efficiently establishes it as a highly promising
solution for medical image analysis. Future research directions could
focus on incorporating hybrid architectures, such as combining the
Swin Transformer with UNet-like designs, and leveraging advanced
fusion techniques, including attention-weighted strategies, to further
enhance scalability, adaptability, and performance across diverse clini-
cal applications. The comparative analysis highlights key strengths and
limitations across both unimodal and multimodal models for medical
image classification. Unimodal models such as ResNet and DenseNet
are strong in image feature extraction, offering reliable performance
metrics while being computationally efficient. However, they lack
the ability to incorporate spatial information, which is critical for
wound classification. Similarly, UNet excels in segmentation tasks,
effectively capturing fine image details, but it requires additional
modifications to handle classification tasks and spatial data integration.
In the multimodal category, the Multimodal Transformer showcases
strong capabilities in fusing visual and spatial information, leveraging
relationships across modalities for enhanced performance. However,
its dependency on optimized fusion mechanisms and potential input
misalignment challenges its robustness.

The proposed Swin Transformer + Transformer stands out by com-
bining the strengths of both image and location processing. The Swin
Transformer efficiently manages high-resolution image data with long-
range dependencies, while the Transformer integrates spatial location
seamlessly. This synergy results in superior evaluation metrics across
accuracy, precision, recall, and F1-score. Despite higher computational
demands compared to unimodal models, it maintains a balance be-
tween performance and efficiency, setting a new benchmark for wound
classification tasks. Data augmentation further improves model perfor-
mance, emphasizing the value of this technique in developing reliable
and generalizable models. Overall, the findings suggest that lever-
aging advanced machine learning architectures and multimodal data
integration is critical for improving the accuracy and effectiveness of
predictive models for complex tasks.

To mitigate these limitations, future studies could incorporate more
diverse and extensive datasets, including images from multiple clinical
centers worldwide, to reduce regional bias. Using more advanced tech-
niques for data enhancement and looking into better ways to encode
location data could also help make the results more general. Exter-
nal validation on publicly available datasets, as well as collaboration
with other institutions, would further strengthen the reliability of the
proposed approach.
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