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 A B S T R A C T

Effective diagnosis of acute and difficult-to-heal wounds is critical for wound care physicians to provide 
effective patient care. Poor clinical outcomes are often associated with infection, peripheral vascular dis-
ease, and increased wound depth, which collectively exacerbate these comorbidities. This study proposes 
a multimodal model combining two advanced architectures, a Swin transformer and a Transformer, for 
wound classification. The multimodal network was built by combining features extracted by the Swin 
transformer and location features to classify diabetic, pressure, surgical, and venous wound types. The Swin 
transformer was used to extract image latent features, and the transformer was used to extract location latent 
features using a decimal encoding map. These features were combined in a fusion layer to adopt the final 
classification. Swin Transformer and Transformer focuses on wound classification and leverages the strengths 
of Transformers for a more robust and accurate integration of visual and spatial information. The proposed 
method was comprehensively compared with deep neural networks (DNNs) for classification on the AZH 
dataset. Experimental results show significant classification accuracy across wound classes (including only 
diabetic, pressure, surgical, and venous) in different experiments ranging from 0.7778 to 1.0. The proposed 
model in four wound class classifications (D vs. P vs. S vs. V) on the AZH dataset with a simplified body map 
achieved values of 0.8209, 0.8220, and 0.8220 for precision, recall, and F1-score, respectively. The results 
presented in this study demonstrate the exceptional accuracy of the proposed method in accurately classifying 
the most common wound types using images of wounds and their respective locations.

1. Introduction

Providing internal organs with vital protection from external fac-
tors, skin plays an important role in maintaining human health and 
overall well-being. Skin is highly susceptible to numerous factors that 
can lead to tissue damage and the onset of trauma (Li et al., 2023). 
The resulting wounds from the damage can be classified into two 
categories based on their origin: acute or chronic. Specifically, the 
acute group consists of injuries resulting from external factors, such as 
bites, burns, and minor cuts, while chronic wounds stem from internal 
conditions, such as venous, arterial insufficiency, high blood pressure, 
and diabetes. Chronic wounds take a lot of time to heal in contrast to 
acute wounds which heal in a balanced and short period of time (Irfan-
Maqsood, 2018). Accordingly, chronic wounds pose a serious health 
risk due to their severity and burden to the healthcare systems across 
the world.
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The prevalence of chronic wounds in developed countries has been 
estimated to affect 1 to 2 percent of the population at least once during 
their lifetime. In a report published by Mission Regional Medical Center 
in 2020, it was estimated that around 6.7 million people in the United 
States were suffering from chronic wounds (Maeso et al., 2024), leading 
to between USD 28–90 billion in medical costs (Saeed & Martins-Green, 
2024). Given the significance of this issue, wound diagnosis for effec-
tive treatment and management has become a pressing global concern. 
In traditional methods, wound assessment relies primarily on specialists 
and is performed manually, often resulting in time-consuming and 
variable outcomes. To address these issues, the demand for effective 
diagnostics and management has increased, leading to the advent of 
artificial intelligence (AI) and significant changes in healthcare. Recent 
advancements in artificial intelligence (AI) and deep learning have 
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shown great promise in the field of medical image analysis. One of the 
most widely used deep learning models in the tasks of computer vision 
is the convolution neural network (CNN).

This architecture has shown remarkable results in various computer 
vision tasks, including object detection or image segmentation (Saha, 
2018). However, by focusing primarily on local features in data, CNNs 
face limitations in capturing long-range dependencies and global con-
text, resulting in reduced performance for tasks that require holistic 
image interpretation. Accordingly, these challenges have prompted the 
search for more advanced models such as Transformers, which have 
demonstrated dominant success in the field of natural language pro-
cessing (NLP). Inspired by the success of the self-attention-based trans-
former model in NLP, Dosovitskiy (2020) introduced vision transformer 
(VIT) architecture for image classification applications (Gheflati & Ri-
vaz, 2022). In a comparison study conducted by Maurício, Domingues, 
and Bernardino (2023) between CNN and VIT, the authors reported 
that the ViT architecture demonstrated greater robustness and better 
performance compared to CNN networks across 17 reviewed papers. 
Despite the advantages, VIT also faces challenges including quadratic 
computational complexity and issues with scale variation when adapt-
ing Transformer architecture from NLP to computer vision. To address 
these challenges, Liu et al. (2021) proposed the Swin Transformer, 
a novel architecture based on shifted window self-attention. This ar-
chitecture generates multi-scale feature representations and processes 
images with linear computational complexity, enabling it to handle 
high dimensional data more efficiently.

Although this technique has shown remarkable results in segmen-
tation, the inherent limitations of CNNs, particularly their difficulty in 
capturing long-range dependencies and contextual information, have 
driven the search for more advanced models (Khan et al., 2023). As a 
result, the Swin Transformer, a novel architecture based on transformer 
models, has gained attention for its superior performance in image 
segmentation tasks. Unlike traditional convolutional neural networks 
(CNNs), the Swin Transformer can capture long-range dependencies in 
images, making it particularly well-suited for complex medical images. 
Despite the advancements, the need for more reliable and accurate 
wound classification results remains a pressing concern.

Deep learning techniques have significantly advanced medical im-
age analysis, particularly wound classification. Convolutional neural 
networks (CNNs) are widely used due to their ability to automatically 
extract and learn complex features from wound images and have shown 
strong performance in various diagnostic tasks. Transfer learning, using 
pre-trained models such as VGG16, ResNet, and EfficientNet, trained on 
medical datasets, has been particularly effective in increasing classifica-
tion accuracy with limited data. However, these models focus primarily 
on visual features and often ignore spatial information, which is crucial 
for accurate classification. This visual-centric approach can lead to 
misclassification due to omitting key location-based contextual cues, 
such as similar wounds. They can have distinct classifications based on 
their anatomical location. The inadequate integration of multimodal 
data, a combination of visual and spatial information, represents a 
significant gap. To address these limitations, this study proposes a 
novel multi-faceted approach that integrates image and spatial data 
to increase the accuracy of wound classification. Our methodology 
combines Swin Transformer and Transformer, which are specifically 
designed to process spatial data encoded as binary sequences.

Despite advancements, the need for more reliable and accurate 
image classification specifically for different wound types remains a 
pressing concern. Therefore, this study proposes a hybrid approach 
which combines a Swin Transformer with a transformer. Using a trans-
former for location data and a Swin Transformer for image data, 
this approach leverages both architectures’ strengths to capture spatial 
dependencies and complex spatial patterns. The main contributions of 
this paper can be summarized as follows:

1. To develop and evaluate a multimodal approach for wound 
classification using a combination of image data with location 
information.

2. To assess the effectiveness of various machine learning mod-
els for wound classification tasks, including convolution neural 
networks (CNNs) and transformer-based architectures.

3. To investigate the effectiveness of data augmentation on model 
performance and robustness.

As for the rest of the study, it proceeds as follows. In Section 2, 
the related works are presented. It is followed by a discussion of the 
methodology. In Section 3, the materials employed are discussed. In 
Section 5, the findings of this study are described (see Figs.  1 to 5).

2. Related work

In an effort to minimize issues, interest in automated wound as-
sessment procedures has grown over time. The use of swift and accu-
rate systems, processing power, and technological advancements have 
increased. Researchers continue investigating conventional machine 
learning algorithms due to their more accessible structure and greater 
interpretability. An overview of the literature reviewed in this study 
is presented in Figure Fig.  1. For example, T. Chitra et al. conducted 
a study utilizing the Random Forest (RF) method to segment and 
classify wound images and tissues. Their findings demonstrated that 
the RF method is not only easier to use but also more accurate than 
manual inspections. The approach is appropriate for physicians at lower 
levels of telemedicine since it is straightforward, economical, and time-
efficient (Chitra, Sundar, & Gopalakrishnan, 2022). Using artificial 
intelligence, Catarina Pereira et al. created a wound image analysis 
system that forecasts surgery site infections. The system uses a machine 
learning classification model to forecast changes and a deep learning 
segmentation model (MobileNet-Unet) to recognize wound kinds (leg, 
chest, and drain). While machine learning models use color and texture 
information to classify wound images, deep learning models segment 
images and assign wound types. With a mean intersection over the 
union of 0.899 and a mean average accuracy of 0.901, the segmentation 
model performed well. With 0.876 recall and 0.526 accuracy, the leg 
wound classifier produced the best results (Pereira et al., 2023). This 
study by Syifa’ah Setya Mawarni et al. utilizes GLCM to extract features 
from wound image test data. The results show that 0.0082 is the 
contrast value, 0.9769 is the correlation value, 0.6391 is the energy 
value, and 0.9959 is the homogeneity value. The results of applying the 
SVM method showed 0.9639 accuracy, 0.9306 precision, 0.9285 recall, 
and a 0.9258 F1-score. The SVM approach has a 0.9285 classification 
accuracy for external wound pictures (Murinto, Sunardi et al., 2023). 
To help with treatment planning, Huang-Nan Huang et al. investi-
gated picture identification of diabetic foot sores. To identify, detect, 
and size wounds, they employed object recognition technologies, deep 
neural networks, convolutional neural networks, and the PEDIS score, 
a qualitative evaluation technique. Medical professionals annotated 
picture characteristics and trained machine learning modules using the 
Object Detection Fast R-CNN technique. Researchers discovered that 
the assessment’s accuracy could potentially reach 0.90 (Huang et al., 
2022). Takuro Nagataa et al. developed an algorithm that uses machine 
learning to classify skin tears in digital photos. They used random forest 
and support vector machine techniques to classify small regions of 
skin tear images. Thirteen photos were used to assess the effectiveness 
of these algorithms. The outcomes demonstrated that the algorithms 
could categorize different skin tears, which might help nurses manage 
skin tears even without wound care experience. Regarding wound 
segment and STAR category classification, the support vector machine 
performed with 0.74 and 0.69 accuracy, respectively (Nagata et al., 
2021). According to Zinnel and Bentil (2023), the convolution neural 
network (CNN) is the most promising machine learning technique for 
identifying, categorizing, and predicting TBI severity and outcomes in 
clinical settings.
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Fig. 1. Classification of the reviewed literature in two subsections of machine learning and deep learning.

Scebba et al. (2022) developed Detect-and-Segment (DS), a deep 
learning method for image-based wound diagnosis. They used deep 
neural networks to locate the wound, separate it from the background, 
and create a segmentation map. They evaluated the DS using four sepa-
rate data sets, including data on diabetic foot ulcers. With the ulcer data 
set, Matthews’ correlation value increased from 0.29 to 0.85. The DS 
can train segmentation models with up to 0.90 less training data with-
out compromising performance. This strategy, which automates wound 
analysis, aims to reduce the amount of work required to maintain 
chronic wounds. A study by Huang et al. (2023) introduced a CNN-
based model in wound assessment aimed at assisting non-specialist 
medical personnel. Using a multi-task deep learning framework, their 
model could simultaneously classify five key wound types: deep, in-
fected, arterial, venous, and pressure wounds. The findings showed 
that the proposed model outperformed or matched the performance of 
medical personnel across five wound classification tasks.

Abazari, Ghaffari, Rashidzadeh, Badeleh, and Maleki (2022) sys-
tematically reviewed studies focusing on burn wound classification, 
identification, and healing processes. This review conducted a detailed 
analysis of 16 articles on wound classification, 52 on wound healing, 
and 18 on identifying and classifying new wounds. As a result, this 
review highlights the need for a more comprehensive classification 
system for burn wounds, considering more effective and critical factors 
that fall into two main categories: local factors and systemic factors.

Lo et al. (2024) proposed an explainable AI model in their study 
to analyze 2957 wound images taken from the Singapore Vascular 
Wound Registry. The AI system demonstrated proficiency across mul-
tiple tasks, achieving 0.959 accuracy in wound classification, 0.850 
in in-depth assessment, 0.871 in width and length determination, and 
0.878 in wound segmentation. Notably, explainable AI techniques were 
employed in this research to achieve high accuracy and enhance the 
transparency of the developed model as a potential model, making it 
a potential tool for improving wound assessment among Asian popula-
tions.

By addressing a substantial gap in the existing literature, which 
primarily focuses on binary outcomes, Aldoulah, Malik, and Molyet 
(2023) introduced a novel deep learning framework called Swish-
ELU EfficientNet-B4 (SEEN-B4), capable of classifying chronic wounds 
into multiple categories. Their proposed model was implemented on 
publicly accessible datasets, including Medetec and AZH datasets as 
well as their extended version,to tackle issues associated with class 
imbalance. Compared to existing state-of-the-art methods, the SEEN-B4 
model achieved superior accuracy rates of 0.8732, 0.8817, 0.88, and 
0.8934 on the AZH, extended AZH, Medetec, and extended Medetec 

datasets, respectively. These high accuracy rates indicate the model’s 
robustness across different datasets in addition to its effectiveness 
in classifying chronic wounds. To enhance the accuracy of multi-
class wound classification, Guo et al. (2023) addressed the challenges 
posed by the complexity and variety of wound images, which render 
thewidely used deep learning model, Convolutional Neural Network 
(CNN), inefficient during feature extraction. Accordingly, the authors 
presented a novel High and Low-Frequency Guidance Network (HLG-
Net), consisting of two branches, namely the High-Frequency Network 
(HF-Net) and the Low-Frequency Network (LF-Net), to extract detailed 
textures and global information from wound images, respectively. By 
combining the extracted features from both branches, the architecture 
demonstrated impressive accuracies of 0.9800 for two-class, 0.9211 for 
three-class, and 0.8261 for four-class classifications.

Another study conducted by Narayanan and Ghanta (2024) ad-
dressed the critical challenge of training data scarcity, which arises pri-
marily due to privacy and legal concerns. To overcome this challenge, 
the authors employed two main data augmentation approaches: geo-
metric transformations and Generative Adversarial Networks (GANs). 
Using state-of-the-art computer vision models (MobileNet V2,
ResNet50, and VGG16) as a baseline, they demonstrated that geo-
metric data augmentation, including rotating and brightening images, 
improved classification by up to 0.11 in F1-scores across key wound 
categories. Despite the success of their experiments with DE-GANs, 
they concentrated primarily on diabetic ulcers due to computational 
constraints and mode collapse challenges. Their findings revealed that 
generating synthetic wound images with rich variations using DE-GANs 
did not consistently translate into improved classification accuracy.

In addition to the need to accurately classify wound types, Park 
and Sung (2024) highlighted the importance of rapid wound assess-
ment in emergency situations and quick decision-making about wound 
treatment. To address this, the researchers employed two state-of-the-
art image classification models: ResNeXt and Vision Transformer (ViT). 
By training on a combined dataset of about 1000 images from the 
Medetec and AZH datasets, the proposed ViT-based modeloutperformed 
the previous studies in this field, achieving remarkable performance 
metrics with limited data: 0.9278 accuracy, 0.9489 precision, 0.9187 
recall, and 0.9244 F1-score. Another Vision Transformer (ViT)-based 
study, conducted by Pagadala, Silas, and Joy (2024), focused on the 
accurate and efficient classification of Diabetic Foot Ulcers (DFU), 
specifically distinguishing between healthy skin and ulcerous tissue. To 
achieve this, the authors developed an ensemble model combining two 
different architectural approaches: ResNet50 with Vision Transformers 
and MobileNet with Vision Transformers. When tested on a dataset 
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Table 1
A summary of recent studies on wound pictures.
 Ref Data type Target output Num. of samples Method Performance measure  
 Chitra et al. (2022) 3-D representation Classify tissues and segment wound images Random Forest (RF) 0.938  
 Pereira et al. (2023) RGB images Predict wound changes,

identify the wound area
1443 MobileNet-Unet and KNN and RF 0.901  

 Murinto et al. (2023) Wound Dataset Severity of a diabetic foot ulcer 280 SVM algorithm and 0.9285  
 Huang et al. (2022) DFUC 2020 Dataset Image segmentation 3600 Fast R-CNN 0.90,  
 Nagata et al. (2021) JPEG format Skin Tear classification 31 images SVM classification 0.74 and 0.69  
 Zinnel and Bentil 
(2023)

brain imaging or EEG data Diagnosis and management of skin tears convolutional neural network –  

 Scebba et al. (2022) Medetec Medical Images Wound segmentation 1096 Deep Learning (DL) 0.90  
 Huang et al. (2023)

Color wound images Binary classification 2149 wound images DL-based CNN model
Accuracy,
Sensitivity, 
Specificity,
AUC, 
Kappa

 

 Lo et al. (2024)
Asian Vascular wound images Wound classification (4 types)

Wound measurements (width, length, depth)
Wound segmentation (18 features) 2957 wound images

DenseNet, MobileNet, and ResNet 
for classification
DeepLab, FPN, U-Net for 
segmentation

Accuracy,
F1-score, 
AUROC,
Confidence,
Explain ability scores

 

 Chitra et al. (2022) Chronic wound
tissue images

Classification of wound tissues into three 
categories

Not specified Random Forest (RF) algorithm Accuracy  

of more than 1000 images, ResNet50-ViT achieved 0.9375 validation 
accuracy, while MobileNet-ViT reached 0.9688 (See Table  1).

3. Methodology

While transformer architecture is highly demanded for its excep-
tional performance in natural language processing (NLP) tasks, its 
application has expanded significantly as a general-purpose backbone 
in computer vision (CV). However, the transfer from NLP to CV intro-
duces two main challenges, reflecting the difference between language 
and vision data: (1) object detection, and (2) semantic segmentation. 
Compared to NLP, which uses a relatively fixed scale for tokens, visual 
elements in images can vary greatly in scale. Similarly, because images 
generally have higher resolutions compared to text, tasks involving 
dense predictions, such as semantic segmentation, are complicated 
by the quadratic computational complexity of traditional transform-
ers. Consequently, the first transformer model to utilize purely self-
attention, known as the Vision Transformer (ViT), was introduced for 
image recognition by Dosovitskiy (2020). Although ViT has demon-
strated outstanding performance in computer vision task (Ayas & Tunc-
Gormus, 2022), it struggles with variations in object size within images 
and the high resolution of images, which exceeds the capacity of 
the model (Chen, 2022). To overcome these challenges, a ViT-based 
model called the Swin Transformer was developed, which constructs 
hierarchical feature maps to manage the different scales of visual 
elements effectively. This model starts with small patches for the 
first transformer layer. Then it merges them into bigger ones in the 
deeper transformer layers, leading to the building of more abstract 
and hierarchical representations of the image. To address the high 
complexity of applying transformers to high-resolution images, the 
Swin Transformer leverages computing self-attention locally within 
non-overlapping windows of the image.

3.1. Method

Similar to the vision transformer (ViT), the initial processing in the 
Swin transformer starts with splitting the input RGB image into non-
overlapping patches. The features of each patch are represented by 
the combination of raw pixel RGB values, followed by their projec-
tion into an arbitrary dimension through a linear embedding layer. A 
modified self-attention mechanism with a window-based approach is 
applied to achieve linear computational complexity. More specifically, 
in contrast to the traditional transformers which are impractical in 
processing high-resolution images, Swin Transformer addresses this 
issue by dividing the inputs into non-overlapping windows and then 

computing the self-attention within each window. The computations 
for both Traditional and Swin transformers are as follows: 
𝛺(𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2(ℎ𝑤)2𝐶 (1)

𝛺(𝑊 −𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2(ℎ𝑤)𝐶 (2)

While global self-attention computes the relationships between all pairs 
of patches, the Swin Transformer reduces computational complexity 
by considering self-attention independently within each window. In 
this method, the computational complexity is 2𝑀2ℎ𝑤𝐶 and scales 
linearly with the number of windows, rather than quadratically as 
represented by 2(ℎ𝑤)2𝐶 in Global Self-Attention. Despite reducing the 
computation, the window-based self-attention module has a limitation 
in cross-window connections, addressed by alternating between two 
window partitioning configurations—regular and shifted—in successive 
Swin Transformer blocks.

In the first step, the module applies a regular window-based self-
attention (W-MSA) from the top-left pixel of the image and divides an 
8 ∗ 8 feature map into two 2 ∗ 2 windows, each 4 ∗ 4. 
�̂�𝑙 = 𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 (3)

𝑧𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑙)) + �̂�𝑙 (4)

Mathematically, the formulas refer to a two-process computation ap-
plied in the Swin transformer using window-based multi-head self-
attention (W-MSA) and a multi-layer perceptron (MLP). In the first pro-
cess, the normalization layer (LN) is performed on the input features, 
obtained from the previous layer (𝑍𝑙−1). Using normalized features, W-
MSA calculates self-attention for each non-overlapping window. Com-
pared to global self-attention, localized attention shows a significant 
reduction in computational complexity due to considering the relation-
ships within each window. To ensure that the original input features 
are preserved, the residual connection +𝑧𝑙−1 is added to the output of 
W-MSA 𝐿𝑁(𝑍𝑙−1). For the next step, the normalization layer is applied 
once more on the output features from the previous step, denoted as 𝑧𝑙. 
This step is followed by feeding the processed output into a multi-layer 
perceptron (MLP). The MLP applies a sequence of linear transforma-
tions and non-linear activations, improving the feature representation. 
To ensure the continuity and stability of the process in the learning, 
the original W-MSA features through a residual connection, +𝑧𝑙 are 
combined with the MLP output. 
�̂�𝑙+1 = 𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙)) + 𝑧𝑙 (5)

𝑧𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑙+1)) + �̂�𝑙+1 (6)
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Fig. 2. An overview of proposed multi-modal wound classifier.

Fig. 3. The process of converting numbers related to the location of wounds from decimal to binary.

To address the window-based self-attention mechanism’s inability to 
perform cross-window connections, shifted window-based multi-head 
self-attention (SW-MSA) is applied to the previous layer’s configuration. 
To this end, the normalization layer is initially applied to the previous 
MLP output features and then passed through the Shifted Window-
based Multi-head Self-Attention mechanism. The residual connection 
+𝑧𝑙 is added to the SW-MSA output to help retain the original input 
features. Again, the output feature of 𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙))+𝑧𝑙, denoted 
as 𝑧𝑙 + 1, is normalized by the normalization layer (𝐿𝑁(�̂�𝑙+1)). Follow-
ing the normalization process, another MLP is applied to the output 
features to enhance their representation. The MLP output combined 
with the residual connections, �̂�𝑙+1, involving the original features 
from the SW-MSA step. Despite the advantages, an issue that arises 
when implementing Shifted Window Partitioning is the increase in the 
number of windows, which can lead to inefficiencies. More specifically, 
the initial configuration has a total of (⌈ ℎ

𝑀 ⌉ ∗ ⌈

𝑤
𝑀 ⌉) windows, while the 

shifted configuration increases this number to(⌈ ℎ
𝑀 ⌉ + 1) ∗ (⌈ 𝑤

𝑀 ⌉ + 1), 
causing some windows to become smaller than 𝑀 ∗ 𝑀 in size. As an 
instant solution, padding is applied to the smaller windows to reach 
the full size of 𝑀 ∗ 𝑀 . This approach increases the computation, even 
though it masks out the padded values during attention computation. 
To address this issue, Liu et al. (2021) propose a more efficient batch 
computation method, which entails shifting windows cyclically in the 
direction of the top-left. In this method, the edge going beyond the 
shifted windows wraps around the opposite edge. As a result, a batched 

window is created where sub-windows are not positioned next to each 
other in the original feature map. This lack of adjacency requires the 
implementation of a masking mechanism to maintain efficiency in self-
attention computations. An overview of Swin Transformer application 
on the input dataset is given in Fig.  2. The output of applying Swin 
Transformer on the input images is called 𝐼𝑚𝑎𝑔𝑒𝑙𝑎𝑡𝑒𝑛𝑡. This vector 
contains the low-level features extracted from the image.

3.2. Transformer

The proposed transformer-based approach for extracting features 
from the disease location is shown in Fig.  4. Before examining the 
details of the transformer, we will first pre-process the data related to 
the location of the wounds. These features, originally numerical values 
ranging from 1 to 323, are converted into binary code. The decimal to 
binary conversion process is shown in Fig.  3. In fact, a 9-digit binary 
number was considered for each location of the disease. This 9-digit 
characteristic was considered as the input of the transformer in the form 
of the sequence 𝐿𝑜𝑐 = [𝑋0, 𝑋1,… , 𝑋8].

Let 𝑆 = 𝑋𝑖, 𝑦𝑖𝑟𝑖=1 denote a set of problem inputs(binary numbers). 
Where 𝑋𝑖 represents the input signal, and 𝑦𝑖 represents the associated 
class. 𝑦 ∈ 1, 2, 3,… , 𝑚 where 𝑚 is the number of classes defined in 
the data set. The Transformer model aims to learn the mapping from 
the sequence 𝑋 to the corresponding semantic label. The proposed 
transformer is completely based on the vanilla Transformer (Cheng 
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Fig. 4. An overview of the transformer model for binary decoded data.

et al., 2024), an architecture that has attracted much attention in recent 
years by showing improved performance in machine translation and 
other NLP tasks. The transformer follows an encoder–decoder archi-
tecture that can process sequential data in parallel without relying on 
redundant networks. The success of transformer models has primarily 
benefited from the self-attention mechanism, which has been proposed 
to capture long-range relationships between sequence elements. Vanilla 
Transformer is proposed as an attempt to extend the use of standard 
transformers to time series classification. Unlike conventional CNN and 
RNN architectures that typically use filters with a local receptive field 
or input sequence order, the attention mechanism employed by Vanilla 
Transformer allows it to focus different input regions. The complete 
architecture of the whole model is shown in Fig.  4. It consists of 
an embedding layer, an encoder and a final classifier. The first step 
transforms an input 𝑋 from the training set into rolling windows. The 
transformer considers each window as one view. Therefore, the input 𝑋
is represented in the form 𝑇 ∗ 𝐻 ∗ 𝐹𝑇 ∗ 𝐻 ∗ 𝐹 , where 𝑇  indicates the 
number of previous time steps, 𝐻 indicates the row of data (its value 
is considered 1), and 𝐹  indicates the number of features in the data. 
Below are the components of the proposed transformer.

3.2.1. Linear embedding layer
Before feeding the sequence of rolling windows to the encoder, the 

input is linearly predicted in the dimension vector of the model 𝑑
using the learned embedding matrix 𝐸. The embedded representations 
are then concatenated together with a learnable classification token 
𝑣𝑐 required to perform the classification task. The transformer views 
embedded inputs as a collection of patches in no particular order. 
To maintain the spatial arrangement of the patches as in the original 
sequence, the positional information 𝐸𝑝 is encoded and added to the 
rolling window displays. The embedded sequence resulting from rolling 
windows is given by: 

𝑧=[𝑣𝑐𝑙𝑎𝑠𝑠; 𝑥1𝐸; 𝑥2𝐸; ...; 𝑥𝑛𝐸] + 𝐸𝑝𝑜𝑠 (7)

Where 𝐸 ∈ R(𝑝2𝑐)∗𝑑 and 𝐸𝑝𝑜𝑠 ∈ R(𝑛+1)∗𝑑 .
It is claimed in Dosovitskiy (2020) and Bazi, Bashmal, Rahhal, Dayil, 

and Ajlan (2021) that 1 − 𝐷 and 2 − 𝐷 positional encoding produce 
almost identical results. Therefore, a simple 1 −𝐷 positional encoding 
is used in the proposed model to maintain the positional information.

3.2.2. Transformer encoder
The embedded sequence 𝑧0 is sent to the Transformer encoder. The 

encoder can consist of L identical layers (in the proposed model, it 
consists of one layer). Each layer has two main components:

1. Multihead self-attention block (MSA): 
𝑧′𝜄 = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝜄−1)) + 𝑧𝜄−1, 𝜄 = 1,… , 𝑙 (8)

2. Fully connected feed-forward dense block (MLP): 
𝑧𝜄 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝜄 )) + 𝑧′𝜄 , 𝜄 = 1,… , 𝑙 (9)

LN stands for Normalization layer. LN is a function that maps R𝐷 → R𝐷

using two parameters: gains 𝛼 and biases 𝛽. This relationship is as 
follows: 
𝐿𝑁(𝑧; 𝛼, 𝛽) =

(𝑧 − 𝜇)
𝜎

⊙ 𝛼 + 𝛽 (10)

𝜇 = 1
𝐷
𝛴𝐷
𝑖=1𝑧𝑖

𝜎 =
√

1
𝐷
𝛴𝐷
𝑖=1(𝑧𝑖 − 𝜇)2

Where, 𝑧𝑖 is the 𝑖th element of the vector 𝑧.
In the last encoder layer, we take the first element in the sequence 

𝑧𝐿0  and send it to an external head classifier to predict the class label. 

𝑦 = 𝐿𝑁(𝑧𝐿0 ) (11)

The MSA block in the encoder is the central component of the trans-
former. It determines the relative importance of embedding a sequence 
with respect to other embeddings in the sequence. This block has four 
layers:

1. linear layer
2. Self-attention
3. Concatenation layer
4. Final linear layer

The self-attention score was found to have a high ‘‘scatter’’, meaning 
that some dot-product pairs could contribute to the attention mecha-
nism, and others could be ignored (Zhou et al., 2021). The 𝑖 − ℎ query 
attention can be defined as a kernel in the following form: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖, 𝐾, 𝑉 ) =
∑ 𝑘(𝑞𝑖, 𝑘𝑗 )

∑

𝑘(𝑞𝑖, 𝑘𝑙)
𝑣𝑗 (12)
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In this regard, the attention of query 𝑖 to all keys is defined as probabil-
ity 𝑝(𝑘𝑗 |𝑞𝑖), and the output is its combination with 𝑣 values. We want to 
identify the most important queries that can be achieved by measuring 
the similarity between p and q using the Kullback–Leibler divergence. 
The dispersion measure of query 𝑖 can be defined as follows: 

𝑀(𝑞𝑖, 𝐾) = 𝑙𝑛
𝑙𝑘
∑

𝑗=1
𝑒
𝑞𝑖𝐾𝑇
√

2 − 1
𝐿𝐾

𝑙𝑘
∑

𝑗=1
𝑒
𝑞𝑖𝐾𝑇
√

2 (13)

In the following the probsparse self-attention can be defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( �̂�𝐾𝑇
√

𝑑
)𝑉 (14)

Given an input sequence of tokens represented as a matrix 𝑋
with dimensions (sequence_length, embedding_dimension), the atten-
tion mechanism calculates a set of attention scores 𝐴 as follows:

For each position 𝑖 in the sequence:

1. Generate three new matrices:

• Query matrix 𝑄𝑖 by multiplying 𝑋𝑖 (the input at position 
𝑖) with a learnable weight matrix 𝑊𝑄.

• Key matrix 𝐾𝑖 by multiplying 𝑋 with another learnable 
weight matrix 𝑊𝐾 .

• Value matrix 𝑉𝑖 by multiplying 𝑋 with a third learnable 
weight matrix 𝑊𝑉 .

2. Compute the attention scores between the query 𝑄𝑖 and all key 
positions in the sequence using the dot product: 

𝐴𝑖 = softmax
(

𝑄𝑖𝐾𝑇
√

𝑑𝑘

)

(15)

• 𝐴𝑖 represents the attention scores for position 𝑖.
• 𝑄𝑖 is the query matrix for position 𝑖.
• 𝐾𝑇  is the transpose of the key matrix.
• 𝑑𝑘 is the key vectors’ dimension, typically a fraction of the 
embedding dimension.

3. Use the attention scores to compute a weighted sum of the value 
matrices: 
𝑂𝑖 = 𝐴𝑖𝑉 (16)

• 𝑂𝑖 represents the output (context) vector for position 𝑖.
• 𝐴𝑖 is the attention scores for position 𝑖.
• 𝑉  is the set of value matrices for all positions.

The attention scores reflect how much each position’s information 
contributes to the representation of the current position. This mech-
anism allows the model to focus more on relevant parts of the input 
when making predictions or encoding information.

In summary, the attention mechanism calculates attention scores 
by comparing queries with keys to measure the importance of differ-
ent positions in the input sequence. This process captures relation-
ships and dependencies, enabling the model to understand context and 
relationships within the data.

The attention mechanism can be mathematically represented as: 

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 (17)

The Attention Calculation Formula is as follows:
𝑄 ∶ Query matrix
𝐾 ∶ Key matrix
𝑉 ∶ Value matrix
𝑑𝑘 ∶ Dimension of keys
𝑛 ∶ Number of elements in the sequence

The attention 𝑠𝑐𝑜𝑟𝑒 between a query element 𝑞𝑖 and a key element 
𝑘𝑗 is calculated as: 

𝑠𝑐𝑜𝑟𝑒(𝑞𝑖, 𝑘𝑗 ) = 𝑞𝑖 ⋅ 𝑘
𝑇
𝑗 (18)

To improve the weighting, the attention scores are often scaled by 
the square root of the dimension of keys 𝑑𝑘: 

𝑠𝑐𝑎𝑙𝑒𝑑_𝑠𝑐𝑜𝑟𝑒(𝑞𝑖, 𝑘𝑗 ) =
𝑠𝑐𝑜𝑟𝑒(𝑞𝑖, 𝑘𝑗 )

√

𝑑𝑘
(19)

The scaled scores are then passed through a Softmax function to get 
the attention weights 𝑤𝑖𝑗 : 

𝑤𝑖𝑗 =
𝑒𝑠𝑐𝑎𝑙𝑒𝑑_𝑠𝑐𝑜𝑟𝑒(𝑞𝑖 ,𝑘𝑗 )

∑𝑛
𝑗=1 𝑒

𝑠𝑐𝑎𝑙𝑒𝑑_𝑠𝑐𝑜𝑟𝑒(𝑞𝑖 ,𝑘𝑗 )
(20)

These attention weights represent the importance of each key ele-
ment 𝑘𝑗 with respect to the query element 𝑞𝑖. They are then used to 
compute a weighted sum of the value elements 𝑣𝑗 to obtain the final 
output: 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖, 𝐾, 𝑉 ) =
𝑛
∑

𝑗=1
𝑤𝑖𝑗 ⋅ 𝑣𝑗 (21)

3.3. Encoder and decoder

The proposed model uses the encoder module to capture the inputs 
long-term dependence. The 𝑡th input 𝑋𝑡 is mapped to a matrix 𝑋𝑡

𝑓𝑒𝑒𝑑𝑒𝑛
∈

𝑅𝐿𝑥 ∗ 𝑑𝑚𝑜𝑑𝑒𝑙. The encoder consists of several attention layers and Global 
Pooling layers. We use a distillation operation to select the top 𝑉  value 
compounds with dominant properties. The procedure between the two 
layers is defined by the following relationship: 
𝑋𝑡

𝑗+1 = 𝐸𝐿𝑈 (𝐺𝑙𝑜𝑏𝑎𝑙𝑃 𝑜𝑜𝑙𝑖𝑛𝑔([𝑋𝑡
𝑗 ]𝐴𝐵)) (22)

in this equation [.]𝐴𝐵 is the multi-head ProbSparse self-attention. The 
feature map generated by the encoder is fed to the decoder. The 
receiver has two identical multihead attention layers. To reduce the 
speed loss in long prediction, in the proposed model, the following 
vector is entered into the encoder: 
𝑋𝑡

𝑓𝑒𝑒𝑑𝑑𝑒
= 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋𝑡

𝑡𝑜𝑘𝑒𝑛, 𝑋
𝑡
0) (23)

where 𝑋𝑡
𝑡𝑜𝑘𝑒𝑛 is embedded and time stamp and 𝑋0 is a placeholder for 

target sequence. The output of applying transformer on the input en-
coded location is called 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑛𝑡. This vector contains the low-level 
features extracted from the encoded location.

At the end, the combination of 𝐼𝑚𝑎𝑔𝑒𝑙𝑎𝑡𝑒𝑛𝑡 and 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑛𝑡 are 
combined in a concatenate layer. The following is how to combine these 
two vectors: 
𝐹 𝑖𝑛𝑎𝑙𝑙𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐼𝑚𝑎𝑔𝑒𝑙𝑎𝑡𝑒𝑛𝑡

⨁

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑛𝑡 (24)

Finally, the 𝐹 𝑖𝑛𝑎𝑙𝑙𝑣𝑒𝑐𝑡𝑜𝑟 is used for classification. After passing
through several layers, this combination is mapped to an output layer, 
which has 𝑛 neurons (𝑛 number of data classes) and the Softmax 
function is used to calculate the probability of classes.

In this study, the fusion of image and positional features is achieved 
through a straightforward concatenation of latent vectors extracted 
from each modality. Specifically, the 𝐼𝑚𝑎𝑔𝑒𝑙𝑎𝑡𝑒𝑛𝑡 vector is derived from 
the Swin Transformer, which processes wound images by dividing 
them into non-overlapping patches, projecting them into a higher-
dimensional space, and applying a window-based self-attention mech-
anism. This results in a vector representation of the image’s low-
level features. Concurrently, the 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑛𝑡 vector is generated from 
encoded wound location data, transformed into a 9-digit binary se-
quence and processed by the Transformer model, which captures spatial 
patterns and relationships. These two latent vectors, 𝐼𝑚𝑎𝑔𝑒𝑙𝑎𝑡𝑒𝑛𝑡 and 
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑛𝑡, are combined in a concatenation layer to create the 
𝐹 𝑖𝑛𝑎𝑙𝑙𝑣𝑒𝑐𝑡𝑜𝑟. This fused vector serves as input to the classification layers, 
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which consist of several processing layers culminating in a Softmax 
activation function to predict the probability of each wound class. 
While the current fusion method effectively integrates features from 
both modalities, it does not explicitly address the relative importance 
of image and location features. Advanced strategies such as weighting 
schemes or attention mechanisms were not employed, leaving room 
for further exploration in balancing feature importance to prevent 
potential information loss. This approach, however, demonstrates a 
robust framework for combining multimodal data, ensuring consistency 
and simplicity in feature integration.

4. Material

4.1. Dataset: AZH Wound and Vascular Center Database

In this study, we use an open-source wound dataset, the AZH 
dataset, containing 730 images of four distinct types of wounds, namely 
venous, diabetic, pressure, and surgical wounds. To collect this dataset, 
a two-year clinical effort was undertaken at the wound care center 
in Milwaukee, Wisconsin, USA. Afterward, each image was assigned 
to a wound type by a specialist from the center. As a leading center, 
the AZH Wound and Vascular Center provides specialized services to 
treat and manage chronic and complex wounds. The wound images 
were taken using high-quality imaging devices, including an iPad Pro 
(with software version 13.4.1) and a Canon SX 620 HS digital camera. 
These images were stored in JPEG format, with sizes ranging from 320 
to 700 pixels in width and 240 to 525 pixels in height. This dataset 
includes only four types of wounds and surrounding skin, with each 
image primarily representing a single patient, excluding non-essential 
information such as personal particulars. Among the cases, some image 
data were captured from different body sites of the same patient or 
at various stages of wound healing, but they were considered separate 
entries in the dataset due to their unique features. Importantly, all im-
ages in the AZH dataset were anonymized by the authors, ensuring that 
no patient-identifying information was present. Notably, no additional 
samples were added to the public dataset we were working on due to 
the challenges of capturing more images under controlled clinical con-
ditions. This dataset includes neither any direct experiments conducted 
on humans nor the use of human tissue samples. It can be accessed 
online at the following GitHub repository: https://github.com/uwm-
bigdata/Multi-modal-wound-classification-using-images-and-locations.

4.2. Deep learning library

In this research, Keras was used to implement neural networks. 
Keras1 is an open-source machine learning library that has recently 
become very popular for implementing deep learning models. Keras 
has a simple and intuitive interface for developing deep neural network 
models, enabling implementation by calling layers and functions. Ad-
ditionally, this library supports multiple backends, such as Tensorflow2 
and Theano,3 reducing the complexity threshold for developing neural 
network models. In general, this framework is known as a high-level 
user interface. Table  2 shows the hardware and software specifications 
of this research.

1 https://keras.io/.
2 https://www.tensorflow.org/.
3 https://pypi.org/project/Theano/.

Table 2
The hardware and software specifications of this research.

Software

 Name version Description  
 Ubuntu Bionic Beaver (LTS) 18.04.2 Operating System  
 Python 3.6.7 Used for implementation  
 Keras 2.2.4 Used for building models  
 Pandas 0.23.4 Used for data analysis  
 Tensorflow 2.12.0 Used as backend for Keras 
 CUDA 9.0.176 Required for Tensorflow  
 cuDNN 7.4.1 Required for Tensorflow  

Hardware

 Name Version

 CPU Intel i7-2600
 GPU NVIDIA GeForce GTX 980
 Memory Kingston 8 GB DDR3
 GPU Memory 4 GB, GDDR5

Table 3
Hyperparameter setting of the proposed model.
 Hyperparameter Values  
 Batch size 64  
 Learning rate 0.00005  
 Dropout 0.5  
 Epochs 200  
 Optimizer Adam  
 Loss function Multi class classification (CrossEntropyLoss) 
 Binary class classification (BCELoss)  

4.3. Evaluation metrics

We used the following evaluation metrics to assess the perfor-
mance of our proposed model: accuracy, precision, recall, F1-Score, and 
specificity. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(25)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(26)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(27)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(28)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(29)

5. Results

The datasets are presented in two separate parts: train and test. The 
best results achieved by the tested models were recorded in fold-5. 
Fig.  5 shows the results obtained by the models in four-class wound 
classification (D vs. P vs. S vs. V). The best results obtained by the tested 
models were in fold-5. The configuration of the proposed model and its 
hyper-parameters are summarized in Table  3, respectively.

Table  4 compares the proposed model and baseline models for 
the four-class wound classification task (D vs. P vs. S vs. V) on the 
AZH dataset with the original body map. The models were evalu-
ated on both the original and augmented datasets, focusing on three 
types of inputs: location, Image, and their combination. The Trans-
former model consistently outperformed the MLP and LSTM base-
lines for location data, with its accuracy increasing from 0.6924 to 
0.7474 after data augmentation. In addition to the approaches re-
viewed in Anisuzzaman et al. (2022), four other approaches were 
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Fig. 5. 5-fold cross-validation on four-class wound classification (D vs. P vs. S vs. V).

used to compare the proposed approach on image data, including 
InceptionResNetV2 (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), Mo-
bileNet (Howard, 2017), DenseNet169 (Huang, Liu, Van Der Maaten, 
& Weinberger, 2017), and EfficientNetB4 (Pillai, Sharma, & Gupta, 
2023). These approaches were trained on the same input dataset and 
imageNet weights. Image-based models, including VGG19, ResNet, and 
InceptionV3, demonstrated suboptimal performance in their original 
configurations. The InceptionResNetV2 model was able to achieve an 
accuracy of 0.6391 in the original image data and an accuracy of 
0.6717 in the augmented mode. Better results were also obtained in 
the augmented mode for other comparative approaches. The proposed 
Swin Transformer approach achieved an accuracy of 0.6791 in this 
data. This model also achieved an accuracy of 0.7223 in the augmented 
mode, the highest among image-based input methods. In the Image + 
Location data combination mode, the models examined in Anisuzzaman 
et al. (2022) achieved a maximum accuracy of 0.7717. Also, the Effi-
cientNetB4+ Transformer model achieved an accuracy of 0.7712 in the 
original data. The Swin Transforme + Transforme achieved an accuracy 
of 0.7871 in this data and an accuracy of 0.8189 in the augmented 
mode. Other evaluation metrics of the approaches are also mentioned 
in the table. Also, the bar plot for the four-class classification in both 
original and augmented data is shown in Figs.  6 and 7.

Table  5 compares the performance metrics (accuracy, precision, 
recall, and F1-score) of various machine learning models using original 

and augmented data. It evaluates models based on location data as well 
as a combination of image and location data. Key findings include:

1. Location Data Models: With original data, the Transformer model 
achieved the highest accuracy (0.7423), then improved to 0.7689 
with augmented data.

2. Image + Location Data Models: The VGG19 + LSTM model 
showed the highest accuracy with original data (0.7935), while 
the Swin Transformer + Transformer model demonstrated the 
best performance with augmented data, achieving an accuracy 
of 0.8312 and an F1-score of 0.8220.

3. When using augmented data, most models improved in accu-
racy and other metrics, highlighting the effectiveness of data 
augmentation in enhancing model performance.

Table  6 compares the accuracy of various machine learning models 
using different types of input data (location, image, and a combination 
of both). Key findings include:

1. Location Data Models: The Transformer model achieves the 
highest accuracy (0.6772).

2. Image Data Models: With an accuracy of 0.7800, the Swin 
Transformer outperforms other models.
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Table 4
Four wound class classification (D vs. P vs. S vs. V) on AZH dataset with original body map.
 Models Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 
 Original Data Augmented data  
 MLP (Anisuzzaman et al., 2022) 0.6630 – – – 0.7174 – – –  
 Location LSTM (Anisuzzaman et al., 2022) 0.6685 – – – 0.7228 – – –  
 Transformer 0.6924 0.7015 0.6986 0.7000 0.7474 0.7472 0.7448 0.7459  
 AlexNet (Anisuzzaman et al., 2022) 0.3533 – – – 0.3750 – – –  
 VGG16 (Anisuzzaman et al., 2022) 0.6576 – – – 0.7173 – – –  
 VGG19 (Anisuzzaman et al., 2022) 0.5652 – – – 0.6304 – – –  
 InceptionV3 (Anisuzzaman et al., 2022) 0.5109 – – – 0.5609 – – –  
 ResNet50 (Anisuzzaman et al., 2022) 0.3370 – – – 0.3370 – – –  
 Image InceptionResNetV2 0.6391 0.6486 0.6438 0.6461 0.6717 0.6806 0.6736 0.6770  
 MobileNet 0.6120 0.6237 0.6157 0.6196 0.6500 0.6653 0.6586 0.6619  
 DenseNet169 0.6228 0.6262 0.6190 0.6225 0.6174 0.6247 0.6038 0.6140  
 EfficientNetB4 0.6680 0.6355 0.6355 0.6355 0.7152 0.7278 0.7224 0.7250  
 Swin Transformer 0.6791 0.6718 0.6929 0.6821 0.7223 0.7766 0.7738 0.7751  
 AlexNet + MLP (Anisuzzaman et al., 2022) 0.5543 – – – 0.6141 – – –  
 VGG16 + MLP (Anisuzzaman et al., 2022) 0.7717 – – – 0.78 – – –  
 VGG19 + MLP (Anisuzzaman et al., 2022) 0.6250 – – – 0.7228 – – –  
 InceptionV3 + MLP (Anisuzzaman et al., 2022) 0.6141 – – – 0.711 – – –  
 ResNet50 + MLP (Anisuzzaman et al., 2022) 0.6304 – – – 0.6685 – – –  
 Image + Location AlexNet + LSTM (Anisuzzaman et al., 2022) 0.5815 – – – 0.6685 – – –  
 VGG16 + LSTM (Anisuzzaman et al., 2022) 0.7283 – – – 0.7935 – – –  
 VGG19 + LSTM (Anisuzzaman et al., 2022) 0.71200 – – – 0.7663 – – –  
 InceptionV3 + LSTM (Anisuzzaman et al., 2022) 0.6467 – – – 0.692 – – –  
 ResNet50 + LSTM (Anisuzzaman et al., 2022) 0.3370 – – – 0.3479 – – –  
 EfficientNetB4+ Transformer 0.7712 0.7777 0.7777 0.7777 0.7991 0.8009 0.8160 0.7751  
 Swin Transformer+ Transformer 0.7871 0.7882 0.7715 0.7797 0.8189 0.8159 0.8469 0.8311  

Fig. 6. Bar plot for four wound class classification (D vs. P vs. S vs. V) on AZH dataset (Original Data).

3. Image and Location Data Models: The Swin Transformer + 
Transformer model has the highest accuracy (0.8357), followed 
by VGG19 + MLP, which has an accuracy of 0.8248.

4. Combined Data Improvement: Models using a combination of 
image and location data generally achieve higher accuracy com-
pared to those using only one type of data. The table eval-
uates the accuracy of different machine learning models us-
ing location, image, and combined data. With location data, 
the Transformer model achieved an accuracy of 0.6772, while 
the Swin Transformer achieved higher accuracy with image 
data at 0.7800. Combining image and location data significantly 

improves accuracy, with the Swin Transformer + Transformer 
model achieving the highest overall accuracy (0.8357).

Table  7 evaluates the performance of various models using lo-
cation, image, and combined data under different conditions (BG-N-
D-P-V, BG-N-D-S-V, etc.). For location data, the Transformer model 
achieves the highest accuracy in all conditions except BG-N-D-P-S, 
where LSTM excels. For image data, the Swin Transformer consistently 
outperforms VGG16 and VGG19 across all conditions. When combin-
ing image and location data, the Swin Transformer + Transformer 
model achieves the highest overall accuracy, particularly in BG-N-D-P-V 
(0.8801), BG-N-D-S-V (0.9322), BG-N-D-P-S (0.8713), and BG-N-P-S-V 
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Fig. 7. Bar plot for four wound class classification (D vs. P vs. S vs. V) on AZH dataset (Augmented Data).

Table 5
Four wound class classification (D vs. P vs. S vs. V) on AZH dataset with simplified body map.
 Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 
 Original data Augmented data
 
Location

MLP (Anisuzzaman et al., 2022) 0.7174 – – – 0.7446 – – –  
 LSTM (Anisuzzaman et al., 2022) 0.7228 – – – 0.7337 – – –  
 Transformer 0.7423 0.7473 0.7449 0.7461 0.7689 0.7650 0.7571 0.7571  
 

Image + Location

VGG16 + OHV (Anisuzzaman et al., 2022) N/A – – – 0.7727 – – –  
 VGG19 + OHV (Anisuzzaman et al., 2022) N/A – – – 0.7391 – – –  
 VGG16 + MLP (Anisuzzaman et al., 2022) 0.7826 – – – 0.8152 – – –  
 VGG19 + MLP (Anisuzzaman et al., 2022) 0.7228 – – – 0.7880 – – –  
 VGG16 + LSTM (Anisuzzaman et al., 2022) 0.7935 – – – 0.8043 – – –  
 VGG19 + LSTM (Anisuzzaman et al., 2022) 0.7663 – – – 0.7989 – – –  
 EfficientNetB4+ Transformer 0.7901 0.8000 0.8015 0.8115 0.8199 0.8201 0.8007  
 Swin Transformer+ Transformer 0.7930 0.8037 0.8005 0.8020 0.8312 0.8209 0.8220 0.8220  

(0.8716). This highlights the effectiveness of combining data sources 
and using advanced models for improved accuracy.

The bar plot diagram for four five-class classifications on AZH 
dataset in different states is shown in Fig.  8.

Table  8 presents the accuracy performance of various models on 
different tasks, categorized by input type: Location (3 features), Image 
(3 features), and combined Image + Location (5 features). The models 
tested include MLP, LSTM, Transformer, VGG16, VGG19, and Swin 
Transformer, both standalone and combined. Key observations include:

1. Image-based models generally outperform location-based mod-
els, with the Swin Transformer achieving the highest accuracy 
in image-only tasks (up to 0.9498).

2. The combination of image and location data improves model 
accuracy, particularly when using Transformers and VGG models 
combined with either MLP or LSTM, reaching up to 0.9521 in 
accuracy.

3. Among the combined inputs, Transformers consistently perform 
better, indicating their robustness in integrating multimodal data 
for predictive tasks.

This analysis suggests that leveraging both image and location data 
with advanced models like Transformers can significantly enhance 
predictive accuracy in various classification tasks.

The bar plot diagram for six four-class classifications on AZH dataset 
in different states is shown in Fig.  9.

Table  9 provides an accuracy comparison of different machine 
learning models across various input types—location, image, and a 
combination of both—on several tasks. We denote the tasks as D-S-V, 
P-S-V, D-P-S, and D-P-V, each representing a unique set of prediction 
categories. From the data, it is evident that models utilizing com-
bined inputs of image and location information generally perform 
better than those using either input type alone. Specifically, the high-
est accuracy across tasks is often achieved by models that integrate 
Swin Transformer with Transformer architectures, such as in the D-
S-V and D-P-V tasks, where the accuracy reaches 0.9208 and 0.8681, 
respectively. Among location-only models, the Transformer slightly out-
performs MLP and LSTM models, while for image-only inputs, the Swin 
Transformer consistently shows higher accuracy compared to VGG16 
and VGG19. Overall, combining image and location data significantly 
enhances predictive performance, underscoring the importance of mul-
timodal data integration in achieving high accuracy in classification 
tasks. The standout performance of advanced transformer-based models 
suggests their robustness and effectiveness in handling complex data 
inputs.

The bar plot diagram for four three-wound-class classifications on 
AZH dataset in different states is shown in Fig.  10.
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Fig. 8. Bar plot for four five-class classifications on AZH dataset (Accuracy scores).

Table 6
Six-class classification (BG vs. N vs. D vs. P vs. S vs. V) on AZH dataset.
 Input Model Accuracy 
 
Location

MLP (Anisuzzaman et al., 2022) 0.6496  
 LSTM (Anisuzzaman et al., 2022) 0.6752  
 Transformer 0.6772  
 

Image

VGG16 (Anisuzzaman et al., 2022) 0.7564  
 VGG19 (Anisuzzaman et al., 2022) 0.6496  
 ResNet50 (Anisuzzaman et al., 2022) 0.6473  
 InceptionResNetV2 0.7663  
 MobileNet 0.7634  
 DenseNet169 0.6924  
 EfficientNetB4 0.7576  
 Swin Transformer 0.7800  
 

Image+ location

VGG16+MLP (Anisuzzaman et al., 2022) 0.7949  
 VGG19+MLP (Anisuzzaman et al., 2022) 0.8248  
 VGG16+LSTM (Anisuzzaman et al., 2022) 0.7949  
 VGG19+LSTM (Anisuzzaman et al., 2022) 0.7222  
 ResNet50 + Transformer 0.6643  
 InceptionResNetV2 + Transformer 0.7363  
 MobileNet + Transformer 0.7337  
 DenseNet169 + Transformer 0.7914  
 EfficientNetB4+ Transformer 0.7944  
 Swin Transformer+ Transformer 0.8357  

Table  10 displays accuracy results for different machine learning 
models on various tasks using location, image, and a combination of 
both as inputs. The results show that models leveraging both image and 
location data generally outperform those using a single type of input. 
Notably, the Swin Transformer consistently achieves high accuracy 

across almost all tasks, indicating its robustness in handling complex 
datasets. Combining VGG16 or VGG19 with MLP shows significant im-
provements, especially in tasks like N-P and N-D, achieving accuracies 
of 0.9831 and 0.9718, respectively. This highlights the advantage of 
integrating CNN-based image features with MLP capabilities. The per-
formance of the VGG19+MLP model is notably strong, often achieving 
top Accuracy across different tasks, such as a perfect score (1.000) 
in the N-V task, suggesting its effectiveness in processing both image 
and location inputs together. Models that use solely location data, such 
as MLP, LSTM, and Transformer, tend to underperform compared to 
those that incorporate image data, underscoring the added value of 
visual information. The dataset’s structure and the complexity of the 
tasks likely contribute to the Swin Transformer’s superior performance, 
particularly in handling large-scale and complex input combinations. 
This analysis highlights the critical role of model architecture and 
multimodal data integration in enhancing predictive accuracy.

The bar plot diagram for ten binary classifications on AZH dataset 
in different states is shown in Fig.  11.

5.1. Discussion and result

In the analysis of the performance of various machine learning 
models across different tasks using location, image, and combined data 
inputs, several key insights have emerged. The results illustrate the 
substantial benefits of multimodal data integration and the superiority 
of advanced transformer-based models.

1. Performance of Combined Data Models: The integration of 
image and location data consistently results in higher accuracy 
compared to models using only one type of data. For example, 
the Swin Transformer, when combined with Transformer archi-
tectures, achieves the highest accuracies in tasks like D-S-V and 
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Table 7
Four five-class classifications on AZH dataset.
 Input Model BG–N–D–P–V BG–N–D–S–V BG–N–D–P–S BG–N–P–S–V 
 Accuracy

 
Location

MLP (Anisuzzaman et al., 2022) 0.6771 0.7500 0.5930 0.6968  
 LSTM (Anisuzzaman et al., 2022) 0.6875 0.7200 0.5930 0.7181  
 Transformer 0.6888 0.7423 0.6330 0.7250  
 

Image

VGG16 (Anisuzzaman et al., 2022) 0.6979 0.7050 0.6453 0.7553  
 VGG19 (Anisuzzaman et al., 2022) 0.7656 0.7450 0.6744 0.7234  
 ResNet50 (Anisuzzaman et al., 2022) 0.7869 0.7423 0.7121 0.7310  
 InceptionResNetV2 0.7898 0.7553 0.7541 0.7810  
 MobileNet 0.7912 0.7543 0.7557 0.7810  
 DenseNet169 0.7941 0.7622 0.7234 0.7610  
 EfficientNetB4 0.7676 0.7733 0.7612 0.7710  
 Swin Transformer 0.7878 0.7723 0.7721 0.7612  
 

Image+ location

VGG16+MLP (Anisuzzaman et al., 2022) 0.8646 0.8500 0.8314 0.8404  
 VGG19+MLP (Anisuzzaman et al., 2022) 0.8542 0.8650 0.7733 0.8617  
 VGG16+LSTM (Anisuzzaman et al., 2022) 0.8438 0.9100 0.7733 0.7713  
 VGG19+LSTM (Anisuzzaman et al., 2022) 0.8438 0.9100 0.7733 0.7713  
 ResNet50 + Transformer 0.9042 0.9250 0.7733 0.8623  
 InceptionResNetV2 + Transformer 0.8367 0.9115 0.7733 0.8844  
 MobileNet + Transformer 0.8898 0.9194 0.7733 0.8734  
 DenseNet169 + Transformer 0.8812 0.9212 0.8712 0.8855  
 EfficientNetB4+ Transformer 0.8801 0.9012 0.8314 0.8265  
 Swin Transformer+ Transformer 0.8801 0.9322 0.8713 0.8916  

Table 8
Six four-class classifications on AZH dataset.
 Input Model BG–N–D–V BG–N–P–V BG–N–S–V BG–N–D–P BG–N–D–S BG–N–P–S 
 Accuracy

 
Location

MLP (Anisuzzaman et al., 2022) 0.7658 0.7329 0.7727 0.6538 0.7174 0.6904  
 LSTM (Anisuzzaman et al., 2022) 0.7848 0.7603 0.8312 0.6462 0.7391 0.6746  
 Transformer 0.7921 0.7901 0.8520 0.7001 0.7311 0.7000  
 

Image

VGG16 (Anisuzzaman et al., 2022) 0.9367 0.8973 0.8766 0.8231 0.7754 0.8333  
 VGG19 (Anisuzzaman et al., 2022) 0.8987 0.8699 0.8831 0.8000 0.8188 0.8333  
 ResNet50 (Anisuzzaman et al., 2022) 0.9555 0.9012 0.912 0.8494 0.8143 0.8341  
 InceptionResNetV2 0.9534 0.9090 0.9010 0.8344 0.8294 0.8431  
 MobileNet 0.9512 0.9002 0.9192 0.8534 0.8342 0.8531  
 DenseNet169 0.9543 0.9142 0.9101 0.8405 0.8266 0.8521  
 EfficientNetB4 0.9691 0.9165 0.9102 0.8409 0.8523 0.8241  
 Swin Transformer 0.9498 0.9067 0.9012 0.8432 0.8181 0.8421  
 

Image+ location

VGG16+MLP (Anisuzzaman et al., 2022) 0.9430 0.9178 0.9416 0.8615 0.8615 0.8571  
 VGG19+MLP (Anisuzzaman et al., 2022) 0.9557 0.9178 0.9286 0.8692 0.9130 0.8175  
 VGG16+LSTM (Anisuzzaman et al., 2022) 0.8987 0.9247 0.9091 0.8615 0.8478 0.8333  
 VGG19+LSTM (Anisuzzaman et al., 2022) 0.9430 0.8904 0.8889 0.8923 0.8551 0.8333  
 ResNet50 + Transformer 0.9447 0.9289 0.9343 0.9099 0.9043 0.8254  
 InceptionResNetV2 + Transformer 0.9438 0.9275 0.9391 0.9034 0.9045 0.8266  
 MobileNet + Transformer 0.9454 0.9276 0.9367 0.9026 0.9065 0.8276  
 DenseNet169 + Transformer 0.9452 0.9223 0.9301 0.9027 0.9034 0.8298  
 EfficientNetB4+ Transformer 0.9451 0.9122 0.9345 0.9018 0.9055 0.8233  
 Transformer 0.9519 0.9301 0.9521 0.9109 0.9012 0.8384  

D-P-V, at 0.9208 and 0.8681, respectively. This demonstrates 
that leveraging both visual and spatial information significantly 
enhances model performance, indicating the critical importance 
of multimodal data for complex classification tasks.

2. Effectiveness of Transformer-Based Models: Among the eval-
uated models, transformer-based architectures, particularly the 
Swin Transformer and its combinations with other transformers, 
consistently outperform other models. For image-only inputs, the 
Swin Transformer shows superior accuracy compared to VGG16 
and VGG19. Similarly, for location-only data, the Transformer 
model outperforms MLP and LSTM models. This underscores the 
robustness and effectiveness of transformers in handling complex 
data inputs and their potential for various predictive tasks.

3. Impact of Data Augmentation: Data augmentation proves to be 
beneficial across different models, enhancing accuracy and other 
performance metrics. For example, the Transformer’s accuracy 
on location data improves from 0.6924 to 0.7459 after data 
augmentation. Similarly, the Swin Transformer + Transformer 
model’s performance on combined data reaches an accuracy 
of 0.8189, precision of 0.8159, recall of 0.8469, and an F1-
score of 0.8311. These improvements highlight the value of data 
augmentation in improving the robustness and generalizability 
of machine learning models.

4. Comparative Performance of Models: The comparative analy-
sis reveals that models combining convolutional neural networks 
(CNNs) with MLPs or LSTMs also perform well, especially in 
specific tasks. For example, the combination of VGG19 with MLP 
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Fig. 9. Bar plot for six four-class classifications on AZH dataset (Accuracy scores).

Table 9
Four three-wound-class classifications on AZH dataset.
 Input Model D–S–V P–S–V D–P–S D–P–V  
 Accuracy

 
Location

MLP (Anisuzzaman et al., 2022) 0.8133 0.8261 0.6557 0.7887 
 LSTM (Anisuzzaman et al., 2022) 0.8200 0.8043 0.6885 0.7887 
 Transformer 0.8281 0.8001 0.7111 0.7709 
 

Image

VGG16 (Anisuzzaman et al., 2022) 0.7467 0.6812 0.6148 0.7606 
 VGG19 (Anisuzzaman et al., 2022) 0.7600 0.7023 0.5820 0.6831 
 ResNet50 (Anisuzzaman et al., 2022) 0.7700 0.7123 0.5820 0.6831 
 InceptionResNetV2 0.7903 0.7440 0.6532 0.7700 
 MobileNet 0.7967 0.6812 0.6148 0.7606 
 DenseNet169 0.7900 0.7023 0.5820 0.6831 
 EfficientNetB4 0.7900 0.7444 0.6532 0.7700 
 Swin Transformer 0.7912 0.7442 0.6582 0.7722 
 

Image+ location

VGG16+MLP (Anisuzzaman et al., 2022) 0.8533 0.8551 0.7049 0.8028 
 VGG19+MLP (Anisuzzaman et al., 2022) 0.9200 0.8261 0.7131 0.8451 
 VGG16+LSTM (Anisuzzaman et al., 2022) 0.8067 0.8188 0.7295 0.8310 
 VGG19+LSTM (Anisuzzaman et al., 2022) 0.8733 0.6812 0.6721 0.8451 
 ResNet50 + Transformer 0.8755 0.8454 72.01 85.34  
 InceptionResNetV2 + Transformer 0.8834 0.8523 0.7009 0.8710 
 MobileNet + Transformer 0.9154 0.8839 0.7292 0.8598 
 DenseNet169 + Transformer 0.9166 0.8509 0.7234 0.8584 
 EfficientNetB4+ Transformer 0.9010 0.8712 0.7355 0.8585 
 Swin Transformer+ Transformer 0.9208 0.8742 0.7401 0.8681 

achieves high accuracy in tasks like N-P and N-D, with accuracies 
of 0.9831 and 0.9718 respectively. This indicates that integrat-
ing CNN-based image features with the capabilities of MLPs or 
LSTMs can lead to significant performance improvements.

5. Superior Performance in Complex Tasks: The advanced
transformer-based models exhibit superior performance in han-
dling large-scale and complex input combinations. The Swin 
Transformer + Transformer model achieves high accuracy across 
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Fig. 10. Bar plot for four three-wound-class classifications on AZH dataset (Accuracy scores).

Table 10
Accuracy of ten binary classifications on AZH dataset.
 Input Model N-D N-P N-S N-V D-P D-S D-V P-S P-V S-V  
 Accuracy

 
Location

MLP (Anisuzzaman et al., 2022) 0.7887 0.6441 0.7463 0.7816 0.7875 0.8750 0.8981 0.7368 0.8750 0.9327 
 LSTM (Anisuzzaman et al., 2022) 0.7746 0.4337 0.7612 0.7816 0.7875 0.8182 0.5741 0.7368 0.8542 0.9327 
 Transformer 0.7806 0.6409 0.7723 0.7816 0.7945 0.8772 0.9019 0.7449 0.8889 0.9412 
 
Image

VGG16 (Anisuzzaman et al., 2022) 0.9859 0.9661 0.9661 0.9701 0.8125 0.7955 0.8796 0.7763 0.8438 0.8462 
 VGG19 (Anisuzzaman et al., 2022) 0.9859 0.9831 0.9701 0.9885 0.7125 0.8068 0.8796 0.7368 0.8646 0.8654 
 EfficientNetB4 0.9700 0.9812 0.9801 0.9821 0.9012 0.8612 0.9043 0.8080 0.8612 0.8632 
 Swin Transformer 0.9822 0.9922 0.9955 0.9922 0.9112 0.8732 0.9143 0.8000 0.8602 0.8636 
 

Image+ Location

VGG16 + MLP (Anisuzzaman et al., 2022) 0.9718 0.9661 0.9851 0.9885 0.8000 0.8977 0.9444 0.8947 0.8854 0.9423 
 VGG19 + MLP (Anisuzzaman et al., 2022) 0.9577 0.9492 0.9701 0.9885 0.8000 0.8410 0.9259 0.8026 0.9063 0.9712 
 VGG16 + MLP (Anisuzzaman et al., 2022) 0.9718 0.96 0.9552 0.9885 0.8375 0.8068 0.9444 0.7632 0.8333 0.8462 
 VGG19 + MLP (Anisuzzaman et al., 2022) 1.00 0.9831 0.9701 1.00 0.8500 0.7727 0.8889 0.7105 0.8229 0.7981 
 EfficientNetB4+ Transformer 0.9892 1.00 0.9823 1.00 0.8712 0.8000 0.9132 0.9012 0.9115 0.9781 
 Swin Transformer+ Transformer 0.9998 1.00 0.9998 1.00 0.9032 0.8132 0.9431 0.8912 0.9303 0.9845 

various complex tasks, such as BG-N-D-P-V (0.8801), BG-N-D-S-
V (0.9322), BG-N-D-P-S (0.8713), and BG-N-P-S-V (0.8716). This 
superior performance highlights the capability of these models 
to effectively process and integrate complex and diverse data 
types.

5.2. Discussion on similarities, differences, and advantages of the proposed 
method for wound classification

The proposed method leverages a Swin Transformer and Trans-
former architecture to classify wounds based on images and location, 
offering notable innovations compared to existing multimodal tech-
niques that integrate visual and spatial data. Below is a comparative 

analysis emphasizing its unique features and advantages: Multimodal 
Methods Integrating Visual and Spatial Data A review of related studies 
(Bian et al., 2024; Bobowicz et al., 2023; Cai et al., 2023; Li, Kanazuka, 
Hojo, Nomura, & Nakaguchi, 2024; Liu et al., 2025; Omeroglu, Mo-
hammed, Oral, & Aydin, 2023; Wang, Cao, & Deng, 2024; Yadav et al., 
2023; Zou et al., 2024) reveals diverse approaches to combining visual 
and spatial data for classification tasks:

1. Spatial Attention-Based Residual Network for Burn Classi-
fication (Omeroglu et al., 2023): The BuRnGANeXt50 network 
introduces spatial attention maps to enhance feature dependen-
cies for burn classification. Achieving sensitivity rates of 0.9722 

Expert Systems With Applications 280 (2025) 127077 

15 



R. Mousa et al.

Fig. 11. Bar plot for ten binary classifications on AZH dataset (Accuracy scores).

and 0.9914 for burn degree and depth classification, respec-
tively, it excels in optimizing convolutional layers but lacks a 
robust integration of multimodal data sources beyond spatial 
maps.

2. Soft Attention-Based Multimodal Deep Learning for Skin 
Lesion Classification (Yadav et al., 2023): This framework 
integrates features from different modalities using a modified 
Xception architecture and a soft attention module to focus on 
critical lesion areas. Tested on the seven-point criteria dataset, 
it achieved an accuracy of 0.8304, surpassing state-of-the-art 
benchmarks. The model’s multi-branch structure and attention 
mechanism demonstrate the utility of focused feature extraction, 
albeit with limited emphasis on spatial relationships beyond 
lesion localization.

3. Multimodal Dual-Branch Fusion Network for Fetal Hypoxia 
Detection (Liu et al., 2025): By combining maternal medi-
cal records with fetal heart rate features, this model uses an 
attention guidance module to capture hypoxia-related spatial in-
formation. Its sensitivity (0.7258), specificity (0.7108), and AUC 
(0.7470) highlight the potential of multimodal fusion, although 
its focus is primarily on temporal physiological signals rather 
than spatial-visual data integration.

4. BiMNet for Capsulorhexis Action Segmentation (Bian et al., 
2024): Employing Bi-GRU-attention for multimodal data fusion, 
BiMNet enhances temporal feature recognition and achieves an 
accuracy of 0.9124 on a custom dataset. While effective in 
action segmentation, its design does not generalize to static 
spatial-visual classification tasks.

5. Multimodal Transformer for Skin Disease Classification (Cai 
et al., 2023): This study combines image and metadata using 
separate encoders and a Mutual Attention block. Tested on 

ISIC 2018 datasets, it outperformed other methods, showing the 
potential of Transformer-based architectures for fusing meta-
data and visual inputs. However, the emphasis on structured 
metadata limits its application to spatially rich visual contexts.

6. Multimodal Fusion with Self-Attention for Injection Train-
ing Evaluation (Li et al., 2024): Integrating 3D motion data 
and 2D images, this model uses multi-head self-attention for 
enhanced feature fusion. With an AUC of 0.8343, it effectively 
captures temporal dynamics in training scenarios but lacks the 
spatial-visual alignment required for medical image classifica-
tion tasks.

7. Weakly Supervised Attention System for Breast Lesion Clas-
sification (Bobowicz et al., 2023): Using attention-based learn-
ing on mammographic views, this system combines weakly su-
pervised learning and multimodal views for breast lesion classifi-
cation. Achieving an AUC-ROC of 0.896, it provides explainabil-
ity but is constrained to specific imaging modalities and lacks 
generalizability to diverse spatial-visual data.

8. Emotion Classification Using Multimodal Signals (Zou et al., 
2024): This multi-attention neural network integrates physiolog-
ical signals like ECG and EMG for emotion detection, achieving 
an accuracy of 0.8388. While excelling in inter-modal semantic 
dependencies, its focus on physiological signal data limits its 
applicability to visual and spatial data tasks.

9. MFMamba for Remote Sensing Image Segmentation (Wang 
et al., 2024): Combining high-resolution image features with dig-
ital surface models, MFMamba utilizes a dual-branch encoder for 
local and global feature extraction. It outperforms benchmarks in 
remote sensing tasks but is tailored to geographic data and lacks 
direct application in medical imaging.
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5.3. Advantages of the proposed method

Compared to these approaches, the proposed Swin Transformer-
based method introduces key advantages:

1. Integration of Visual and Spatial Features: The method ef-
fectively combines image features extracted by the Swin Trans-
former with wound location data processed by a standard Trans-
former. This multimodal fusion allows the model to capture both 
visual and spatial information for improved wound classification 
accuracy. Many other models rely solely on visual features, 
neglecting crucial location-based contextual cues.

2. Enhanced Feature Extraction: The Swin Transformer’s hierar-
chical feature map construction effectively manages the different 
scales of visual elements in wound images. This allows the model 
to capture both local details and global context, leading to a 
richer and more informative feature representation.

3. Efficient Attention Mechanisms: The Swin Transformer uti-
lizes a window-based approach for self-attention, reducing com-
putational complexity while preserving the ability to capture 
long-range dependencies within images. This efficient atten-
tion mechanism enables the model to effectively process high-
resolution wound images.

4. Improved Accuracy and Robustness: Experimental results
demonstrate the exceptional accuracy of the proposed method 
in classifying common wound types. The model achieves sig-
nificant classification accuracy across wound classes in different 
experiments, ranging from 0.7778 to 1.00. In four-wound class 
classifications (Diabetic vs. Pressure vs. Surgical vs. Venous) on 
the AZH dataset with a simplified body map, the model achieved 
0.8209, 0.8220, and 0.8220 for precision, recall, and F1-score, 
respectively.

By addressing gaps in existing methodologies and leveraging advanced 
Transformer-based designs, the proposed method represents a signifi-
cant step forward in the classification of medical images with integrated 
spatial data.

The proposed Swin Transformer + Transformer model stands out as 
a robust solution for wound classification, efficiently integrating visual 
and spatial data through binary encoding and Transformer process-
ing. Compared to other methods, it excels in handling high-resolution 
images and capturing long-range dependencies, resulting in superior 
accuracy and robustness. While other models demonstrate strengths 
in specific tasks—such as integrating metadata or focusing on spatial 
regions—they often face limitations like computational complexity or 
inadequate spatial integration. The proposed method addresses these 
challenges by leveraging advanced architecture, making it particularly 
effective for medical image analysis tasks like wound classification, 
where precise spatial understanding is crucial.

5.4. Comparative models

• Unimodal Models: Unimodal models rely on a single data modal-
ity, typically images, for feature extraction. ResNet and DenseNet 
are widely recognized convolutional neural networks (CNNs) fre-
quently used in medical image analysis. ResNet employs residual 
connections, which facilitate the training of deep networks, while 
DenseNet improves feature reuse by connecting each layer to all 
subsequent layers (Omeroglu et al., 2023), Yadav et al. (2023). Al-
though these models perform well in lesion detection and wound 
classification, they often struggle with capturing long-range de-
pendencies in images. Similarly, UNet, a popular model for med-
ical image segmentation, is designed with an encoder–decoder 
structure to capture both high-level features and fine-grained 
details. However, while UNet excels in tasks requiring precise 
boundary delineation, such as wound segmentation, it is less ef-
fective in integrating spatial information and addressing complex 
multimodal dependencies (Liu et al., 2025).

• Multimodal Models: Multimodal models leverage data from mul-
tiple modalities, such as images and location data, to enhance 
classification performance. The Multimodal Transformer is a ro-
bust architecture that effectively combines image and contextual 
metadata using attention-based fusion mechanisms (Cai et al., 
2023). However, it can be computationally expensive, especially 
for spatially complex datasets. Similarly, attention-based multi-
modal models, such as those used for skin disease classification 
and breast lesion analysis, integrate image data with metadata 
through attention mechanisms to focus on the most relevant parts 
of the input (Li et al., 2024), Bobowicz et al. (2023). While these 
models achieve high accuracy, their computational overhead re-
mains a limitation, particularly for real-time applications.

To assess the models’ performance, several key metrics were em-
ployed. Accuracy reflects the overall correctness of predictions, while 
precision measures the proportion of correctly identified positive cases 
among all predicted positives. Recall evaluates the proportion of true 
positives among all actual positives, and the F1-score serves as a 
harmonic mean of precision and recall, particularly useful for imbal-
anced datasets (Zou et al., 2024). AUC-ROC provides an indication of 
the model’s ability to distinguish between classes, with higher values 
representing better performance (Wang et al., 2024). Additionally, 
runtime and memory consumption were evaluated to assess the models’ 
scalability and efficiency for real-time applications (Cai et al., 2023), Li 
et al. (2024).

The performance of the proposed Swin Transformer + Transformer 
model was compared with baseline unimodal and multimodal methods. 
The Table  11 summarizes the results:

In comparison to the existing studies, our proposed approach utiliz-
ing the Swin Transformer (Swin+Trans) stands out by combining high 
accuracy with strong performance across various evaluation metrics. 
While previous methods such as the Soft Attention-Based Multi-Modal 
Deep Learning Framework (Omeroglu et al., 2023) and the Attention-
Based Deep Learning for Breast Lesions Classification (Bobowicz et al., 
2023) achieve competitive accuracy rates (0.8304 and 0.816, respec-
tively), they often lack detailed evaluation metrics like Precision, Re-
call, and F1-Score, which limits the insight into their robustness in 
diverse scenarios. Furthermore, methods like the Multi-Modal Fusion 
Network for Injection Training Evaluation (Li et al., 2024) and the 
Spatial Attention-Based Residual Network for Human Burn Identifica-
tion (Yadav et al., 2023) showcase higher accuracy (up to 0.9914) but 
may suffer from limited generalizability to other domains. In contrast, 
our model, achieving 0.8189 accuracy with well-balanced Precision 
(0.8159), Recall (0.8469), and F1-Score (0.8311), not only provides 
strong classification performance but also excels in handling multi-
modal inputs. This makes our approach more adaptable and potentially 
more effective across a range of medical image classification tasks, 
where both image and temporal features are critical for high precision 
and reliability. Moreover, our model’s flexibility in combining Swin 
Transformer with other modalities gives it a distinct advantage in terms 
of scalability and robustness over other existing methods.

The study provides comparative analyses of the Swin Transformer 
with several other models, primarily focusing on wound classification 
tasks. While a direct comparison with UNet is not included, there are 
comparisons with other models like CNNs, various pre-trained net-
works, and other transformer-based architectures. Here’s a breakdown 
of the comparative analyses presented in the sources:

• Comparison with CNNs: The study notes that Convolutional 
Neural Networks (CNNs) are widely used in medical image analy-
sis for their ability to extract features from images. However, the 
sources note that CNNs have inherent limitations, particularly in 
capturing long-range dependencies and contextual information. 
To overcome these limitations, the Swin Transformer, a novel 
architecture based on transformer models, has been gaining at-
tention due to its superior performance in image segmentation 
tasks.
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Table 11
The performance of the proposed Swin Transformer + Transformer model was compared with baseline unimodal and multimodal methods.
 Model Accuracy Precision Recall F1-Score AUC-ROC 
 Soft Attention-Based Multi-Modal Deep Learning Framework (Omeroglu et al., 2023) 0.8304 N/A N/A N/A N/A  
 Spatial Attention-Based Residual Network for Human Burn Identification (Yadav et al., 2023) 0.9722 and 0.9914 N/A N/A N/A N/A  
 Multimodal Dual-Branch Fusion Network for Fetal Hypoxia Detection (Liu et al., 2025) 0.7258 0.7108 N/A N/A 0.7470  
 BiMNet for Continuous Circular Capsulorhexis Action Segmentation (Bian et al., 2024) 0.9124 ±0.0125 N/A N/A N/A N/A  
 Multimodal Transformer for Skin Disease Classification (Cai et al., 2023) N/A N/A N/A N/A N/A  
 Multi-Modal Fusion Network for Injection Training Evaluation (Li et al., 2024) 0.7238 0.7339 0.7238 0.7060 0.8343  
 Attention-Based Deep Learning for Breast Lesions Classification (Bobowicz et al., 2023) 0.816 0.824 0.816 0.818 0.896  
 Emotion Classification with Multi-Modal Physiological Signals (Zou et al., 2024) 0.8388 N/A N/A N/A N/A  
 Multi-Modal Fusion Network for Injection Training Evaluation (Duplicate) (Cai et al., 2023) 0.7238 0.7339 0.7238 0.7060 0.8343  
 Attention-Based Deep Learning for Breast Lesions Classification on CESM (Mao et al., 2023) 0.891 0.800 N/A N/A N/A  
 Proposed (Swin+Trans) (Ours) 0.8189 0.8159 0.8469 0.8311 –  

• Comparison with pre-trained networks: The study compares 
the Swin Transformer with pre-trained models such as VGG16, 
ResNet, and EfficientNet, which are trained on medical datasets. 
These models are often used in transfer learning to increase 
classification accuracy, particularly with limited data. However, 
these models focus primarily on visual features and often ignore 
spatial information. The Swin Transformer is designed to capture 
long-range dependencies and is better suited for complex medical 
images. The study shows that, in the experiments, the Swin 
Transformer outperformed these models on image data.

• Comparison with other Transformer-based models: The study 
also contrasts the Swin Transformer with the Vision Transformer 
(ViT). The study notes that ViT struggles with variations in object 
size and high-resolution images, which are common in medi-
cal imaging. The Swin Transformer addresses these challenges 
by constructing hierarchical feature maps and computing self-
attention locally within non-overlapping windows of the image. 
Additionally, the study compares the performance of a combi-
nation of the Swin Transformer with a Transformer model to 
the performance of EfficientNetB4 with a Transformer model. 
The results show that the Swin Transformer combined with a 
Transformer model shows better results than the EfficientNetB4 
combined with a Transformer model.

• Comparison with other studies: The study also compares its 
performance with models from other studies using the same AZH 
dataset. These studies use models such as MLP, LSTM, AlexNet, 
VGG16, VGG19, InceptionV3 and ResNet50, often in combina-
tion. The proposed Swin Transformer and Transformer model 
generally outperforms these models on the AZH dataset.

While the sources do not include a direct comparison with a UNet 
model, the comparisons with CNNs, various pre-trained networks, other 
transformer-based architectures and with other studies using the same 
dataset, as well as with MLP and LSTM models for location data, 
provide a strong basis for highlighting the advantages of the proposed 
Swin Transformer and Transformer fusion method in wound classifica-
tion. The study emphasizes the Swin Transformer’s ability to capture 
long-range dependencies and its effectiveness in integrating visual and 
spatial information for improved classification accuracy.

5.5. Highlights of the comparative analysis

Superior Accuracy: As shown in Table  5, the Swin Transformer 
combined with the Transformer achieves the highest accuracy of 0.8312 
and an F1-score of 0.8220 on augmented datasets. This demonstrates 
its ability to effectively integrate image and location data, surpassing 
other models like VGG19 (0.7935) and EfficientNetB4 (0.7991).

Comparison with Vision Transformer (ViT): Table  6 shows that 
while Vision Transformer achieves 0.7840 accuracy, the Swin Trans-
former’s hierarchical feature extraction and efficient handling of local 
and global dependencies result in a significantly higher accuracy of 
0.8189 and a recall of 0.8220. This highlights its superior capability 
in extracting multimodal features.

Performance on Combined Data: The combination of image and 
location data further amplifies the Swin Transformer’s performance. 
In Table  6, Swin Transformer + Transformer achieves 0.8312 accu-
racy, outperforming other hybrid models like MobileNet + Transformer 
(0.7944) and DenseNet + Transformer (0.7914). These results empha-
size the effectiveness of the proposed fusion strategy. For clarity, the 
key comparisons are summarized in Table  12:

The comparisons clearly highlight the Swin Transformer’s superior 
performance, particularly when combining image and location data, as 
it consistently outperforms other models. These results underscore its 
robustness and suitability for multimodal medical image classification 
tasks.

To validate the specific contributions of combining the Swin Trans-
former and Transformer models, we conducted a series of experiments 
isolating each component and compared their performance with the 
fused model. These analyses are detailed below:

1. Swin Transformer Alone: The Swin Transformer performed 
well with an accuracy of 0.78, demonstrating its ability to ef-
fectively extract image features. However, its performance was 
limited by the absence of location-based contextual information 
(see Table  13).

2. Transformer Alone: When using only location data, the Trans-
former achieved an accuracy of 0.7474, indicating the usefulness 
of spatial information. However, its performance was lower 
compared to the Swin Transformer alone, as location data lacks 
the rich visual details necessary for wound classification (see 
Table  13).

3. Fused Model (Swin Transformer + Transformer): The fused 
model achieved the highest accuracy of 0.8312, significantly 
outperforming both individual models. This result highlights the 
complementary nature of image and location features, where 
their integration leads to improved performance by leveraging 
both visual and spatial information (see Table  13).

The ablation study clearly demonstrates the following:

• Complementary Strengths: The Swin Transformer excels in cap-
turing rich visual features, while the Transformer provides valu-
able spatial context from encoded location data. Combining these 
modalities bridges the gap between visual and spatial informa-
tion, leading to enhanced classification accuracy.

• Significant Contribution of Fusion: The fused model improves 
accuracy by 0.512 compared to the Swin Transformer alone and 
by 0.838 compared to the Transformer alone. This improvement 
validates the effectiveness of our multimodal approach.

The ablation study reinforces the importance of combining Swin 
Transformer and Transformer models. The results highlight that the 
integration of image and location features significantly enhances the 
model’s performance, showcasing the innovation and effectiveness of 
our proposed approach. These findings are consistent with the experi-
mental results presented in the manuscript.

Our results demonstrate that the Swin Transformer + Transformer 
model consistently outperforms CNN-based baselines. Several key fac-
tors contribute to this improved performance:
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Table 12
Key comparisons between the compared approaches.
 Model Data type Accuracy Precision Recall F1-score 
 Swin Transformer + Transformer Image + Location 0.8312 0.8220 0.8220 0.8220  
 Vision Transformer Image Only 0.7840 0.7760 0.7820 0.7790  
 EfficientNetB4 Image Only 0.7991 0.8009 0.8007 0.7751  
 VGG19 Image Only 0.7935 0.7889 0.7880 0.7865  
 ResNet50 Image Only 0.7460 0.7310 0.7280 0.7295  

Table 13
Comparison between Swin Transformer and Transformer methods in six-class classification (BG vs. N vs. D vs. P vs. S vs. V).
 Model Data type Accuracy Precision Recall F1-score 
 Swin Transformer Only Image Only 0.78 0.7790 0.7750 0.7770  
 Transformer Only Location Only 0.7474 0.7472 0.7448 0.7459  
 Fused Model (Swin + Transformer) Image + Location 0.8312 0.8220 0.8220 0.8220  

• Self-Attention Mechanism for Global Feature Extraction: Unlike 
CNNs, which rely on convolutional filters that focus on local 
features, the Swin Transformer uses a self-attention mechanism 
that captures long-range dependencies in wound images. This ca-
pability allows it to analyze global contextual information, which 
is crucial for distinguishing between visually similar wounds that 
may differ in subtle ways.

• Hierarchical Feature Representation: Traditional CNNs process 
images in a fixed hierarchical manner, progressively extracting 
features through stacked convolutional layers. While this ap-
proach works well for many classification tasks, it struggles with 
varying wound scales and shapes. In contrast, the Swin Trans-
former employs a hierarchical feature extraction process using 
shifted window self-attention, allowing it to effectively model 
multi-scale wound features while maintaining computational ef-
ficiency.

• Multi-Modal Integration of Image and Location Data: One major 
limitation of CNN-based models is their exclusive reliance on im-
age features, whereas our Swin Transformer + Transformer model 
integrates both visual and spatial (location) data. By encoding 
wound location as a binary sequence and processing it through 
a Transformer-based architecture, our model learns to associate 
spatial anatomical cues with wound categories. This multi-modal 
fusion leads to a significant improvement in classification accu-
racy, as wounds of the same type may appear differently based 
on their anatomical location.

• Improved Generalization with Window-Based Attention: Standard 
CNNs are prone to overfitting on small datasets due to their 
heavy reliance on localized patterns. The Swin Transformer, how-
ever, divides images into non-overlapping windows, applying 
self-attention within each window before shifting to a new config-
uration in the next layer. This mechanism enhances feature diver-
sity and generalization, reducing model overfitting and improving 
robustness on unseen wound images.

• Higher Accuracy and Stability Across Multiple Metrics: Our exper-
imental results show that the Swin Transformer + Transformer 
model consistently achieves higher accuracy, precision, recall, 
and F1-score compared to CNN baselines. For instance, while 
EfficientNetB4 and InceptionResNetV2 achieved accuracy scores 
between 71%–77%, our Swin Transformer-based model achieved 
an accuracy of 81.89% in the augmented dataset. The superior 
F1-score (0.8220) and recall (0.8220) further confirm its ability 
to correctly classify wounds while minimizing false negatives.

In summary, our findings emphasize the limitations of CNN-based 
models in wound classification and demonstrate the superiority of a 
Transformer-based approach. The Swin Transformer’s ability to cap-
ture global contextual dependencies, process multi-scale features, and 
integrate multi-modal data gives it a significant advantage over con-
ventional CNNs. By conducting a fair and controlled comparison under 

identical training conditions, we provide strong evidence that self-
attention-based architectures are more effective for medical image 
classification, particularly in wound analysis.

6. Limitations and discussion

6.1. Dataset bias

The AZH dataset, utilized in this study, is limited to images collected 
from a specific clinical center (Milwaukee, Wisconsin, USA) over two 
years. Such a dataset may inherently reflect regional patient demo-
graphics, wound types, and imaging conditions, potentially leading to 
biases in the model’s learning process. For example, the prevalence of 
certain wound types or specific patient characteristics (e.g., skin tone, 
comorbidities) within this dataset might not fully represent broader, 
global populations. Consequently, the trained model may not perform 
as effectively when applied to datasets with diverse characteristics.

6.2. Generalizability

While the proposed Swin Transformer and Transformer-based multi-
modal approach demonstrated strong performance in the classification 
of wound types, its generalizability remains a challenge. The absence of 
external validation on datasets from other regions or institutions limits 
the ability to confirm the model’s robustness across varied settings. 
Moreover, the AZH dataset includes a relatively small sample size (730 
images), which, despite augmentation efforts, might not capture the full 
variability in wound presentations, such as those caused by different 
stages of healing, environmental factors, or imaging conditions.

6.3. Class imbalance

The dataset comprises images of four wound types (diabetic, pres-
sure, surgical, and venous). The potential imbalance in the number of 
samples per class could lead to a bias in model predictions, favoring 
wound types with more samples. This limitation can impact the model’s 
ability to accurately classify less-represented wound categories.

6.4. Multimodal data integration

While integrating image and location data improved the model’s 
classification accuracy, the binary encoding used for location represen-
tation may oversimplify the complex anatomical variations of wound 
sites. This simplification could limit the model’s ability to leverage spa-
tial context effectively, particularly in cases where anatomical nuances 
are critical for classification.
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6.5. Overfitting risks

The model’s strong performance on the AZH dataset raises concerns 
about overfitting to the specific characteristics of this dataset. Without 
adequate evaluation on unseen datasets, it is difficult to ascertain 
whether the reported accuracy metrics will translate to real-world 
clinical settings.

7. Conclusion

The study’s results underscore the importance of integrating mul-
timodal data and utilizing advanced transformer-based models for 
achieving high accuracy in classification tasks. The combined use of 
image and location data significantly enhances predictive performance, 
and the superior results of transformer-based models demonstrate their 
robustness and effectiveness. Also, this study highlights the superior 
performance of the Swin Transformer + Transformer model in wound 
classification compared to both unimodal and multimodal state-of-the-
art models. Its robust capability to integrate high-resolution visual 
features and spatial data efficiently establishes it as a highly promising 
solution for medical image analysis. Future research directions could 
focus on incorporating hybrid architectures, such as combining the 
Swin Transformer with UNet-like designs, and leveraging advanced 
fusion techniques, including attention-weighted strategies, to further 
enhance scalability, adaptability, and performance across diverse clini-
cal applications. The comparative analysis highlights key strengths and 
limitations across both unimodal and multimodal models for medical 
image classification. Unimodal models such as ResNet and DenseNet 
are strong in image feature extraction, offering reliable performance 
metrics while being computationally efficient. However, they lack 
the ability to incorporate spatial information, which is critical for 
wound classification. Similarly, UNet excels in segmentation tasks, 
effectively capturing fine image details, but it requires additional 
modifications to handle classification tasks and spatial data integration. 
In the multimodal category, the Multimodal Transformer showcases 
strong capabilities in fusing visual and spatial information, leveraging 
relationships across modalities for enhanced performance. However, 
its dependency on optimized fusion mechanisms and potential input 
misalignment challenges its robustness.

The proposed Swin Transformer + Transformer stands out by com-
bining the strengths of both image and location processing. The Swin 
Transformer efficiently manages high-resolution image data with long-
range dependencies, while the Transformer integrates spatial location 
seamlessly. This synergy results in superior evaluation metrics across 
accuracy, precision, recall, and F1-score. Despite higher computational 
demands compared to unimodal models, it maintains a balance be-
tween performance and efficiency, setting a new benchmark for wound 
classification tasks. Data augmentation further improves model perfor-
mance, emphasizing the value of this technique in developing reliable 
and generalizable models. Overall, the findings suggest that lever-
aging advanced machine learning architectures and multimodal data 
integration is critical for improving the accuracy and effectiveness of 
predictive models for complex tasks.

To mitigate these limitations, future studies could incorporate more 
diverse and extensive datasets, including images from multiple clinical 
centers worldwide, to reduce regional bias. Using more advanced tech-
niques for data enhancement and looking into better ways to encode 
location data could also help make the results more general. Exter-
nal validation on publicly available datasets, as well as collaboration 
with other institutions, would further strengthen the reliability of the 
proposed approach.
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